Entity

Time filter

Source Type

Concord, MA, United States

Cambridge College is a private, non-profit college based in Cambridge, Massachusetts, specializing in adult education.It offers distance learning and blended learning programs toward undergraduate and graduate degrees in education, counseling, psychology, management, health care management, and human services. Cambridge College operates regional centers in Lawrence, Massachusetts, Springfield, Massachusetts, Augusta, Georgia, Ontario, California, Chesapeake, Virginia, Memphis, Tennessee, and San Juan, Puerto Rico. There are 1,552 undergraduate students and 5,375 graduate students enrolled at Cambridge College. Wikipedia.


Liu R.G.,Cambridge College
Physical Review D - Particles, Fields, Gravitation and Cosmology | Year: 2015

This paper examines the properties of "lattice universes" wherein point masses are arranged in a regular lattice on spacelike hypersurfaces; open, flat, and closed universes are considered. The universes are modeled using the Lindquist-Wheeler (LW) approximation scheme, which approximates the space-time in each lattice cell by Schwarzschild geometry. Extending Lindquist and Wheeler's work, we derive cosmological scale factors describing the evolution of all three types of universes, and we use these scale factors to show that the universes' dynamics strongly resemble those of Friedmann-Lemaître-Robertson-Walker (FLRW) universes. In particular, we use the scale factors to make more salient the resemblance between Clifton and Ferreira's Friedmann-like equations for the LW models and the actual Friedmann equations of FLRW space-times. Cosmological redshifts for such universes are then determined numerically, using a modification of Clifton and Ferreira's approach; the redshifts are found to closely resemble their FLRW counterparts, though with certain differences attributable to the "lumpiness" in the underlying matter content. Most notably, the LW redshifts can differ from their FLRW counterparts by as much as 30%, even though they increase linearly with FLRW redshifts, and they exhibit a nonzero integrated Sachs-Wolfe effect, something which would not be possible in matter-dominated FLRW universes without a cosmological constant. © 2015 American Physical Society. Source


Dauncey M.J.,Cambridge College
European Journal of Clinical Nutrition | Year: 2014

Nutrition affects the brain throughout life, with profound implications for cognitive decline and dementia. These effects are mediated by changes in expression of multiple genes, and responses to nutrition are in turn affected by individual genetic variability. An important layer of regulation is provided by the epigenome: nutrition is one of the many epigenetic regulators that modify gene expression without changes in DNA sequence. Epigenetic mechanisms are central to brain development, structure and function, and include DNA methylation, histone modifications and non-protein-coding RNAs. They enable cell-specific and age-related gene expression. Although epigenetic events can be highly stable, they can also be reversible, highlighting a critical role for nutrition in prevention and treatment of disease. Moreover, they suggest key mechanisms by which nutrition is involved in the pathogenesis of age-related cognitive decline: many nutrients, foods and diets have both immediate and long-term effects on the epigenome, including energy status, that is, energy intake, physical activity, energy metabolism and related changes in body composition, and micronutrients involved in DNA methylation, for example, folate, vitamins B6 and B12, choline, methionine. Optimal brain function results from highly complex interactions between numerous genetic and environmental factors, including food intake, physical activity, age and stress. Future studies linking nutrition with advances in neuroscience, genomics and epigenomics should provide novel approaches to the prevention of cognitive decline, and treatment of dementia and Alzheimer's disease.European Journal of Clinical Nutrition advance online publication, 3 September 2014; doi:10.1038/ejcn.2014.173. Source


Pontzen A.,Kavli Institute for Cosmology and Institute of Astronomy | Pontzen A.,Cambridge College | Governato F.,University of Washington
Monthly Notices of the Royal Astronomical Society | Year: 2012

We propose and successfully test against new cosmological simulations a novel analytical description of the physical processes associated with the origin of cored dark matter density profiles. In the simulations, the potential in the central kiloparsec changes on sub-dynamical time-scales over the redshift interval 4 > z > 2, as repeated, energetic feedback generates large underdense bubbles of expanding gas from centrally concentrated bursts of star formation. The model demonstrates how fluctuations in the central potential irreversibly transfer energy into collisionless particles, thus generating a dark matter core. A supply of gas undergoing collapse and rapid expansion is therefore the essential ingredient. The framework, based on a novel impulsive approximation, breaks with the reliance on adiabatic approximations which are inappropriate in the rapidly changing limit. It shows that both outflows and galactic fountains can give rise to cusp flattening, even when only a few per cent of the baryons form stars. Dwarf galaxies maintain their core to the present time. The model suggests that constant density dark matter cores will be generated in systems of a wide mass range if central starbursts or active galactic nucleus phases are sufficiently frequent and energetic. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS. Source


Baddeley M.,Cambridge College
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2010

Typically, modern economics has steered away from the analysis of sociological and psychological factors and has focused on narrow behavioural assumptions in which expectations are formed on the basis of mathematical algorithms. Blending together ideas from the social and behavioural sciences, this paper argues that the behavioural approach adopted in most economic analysis, in its neglect of sociological and psychological forces and its simplistically dichotomous categorization of behaviour as either rational or not rational, is too narrow and stark. Behaviour may reflect an interaction of cognitive and emotional factors and this can be captured more effectively using an approach that focuses on the interplay of different decision-making systems. In understanding the mechanisms affecting economic and financial decision-making, an interdisciplinary approach is needed which incorporates ideas from a range of disciplines including sociology, economic psychology, evolutionary biology and neuroeconomics. © 2010 The Royal Society. Source


Edwards A.W.F.,Cambridge College
Genetics | Year: 2013

Robert Heath Lock (1879-1915), a Cambridge botanist associated with William Bateson and R. C. Punnett, published his book Recent Progress in the Study of Variation, Heredity, and Evolution in 1906. This was a remarkable textbook of genetics for one appearing so early in the Mendelian era. It covered not only Mendelism but evolution, natural selection, biometry, mutation, and cytology. It ran to five editions but was, despite its success, largely forgotten following Lock's early death in 1915. Nevertheless it was the book that inspired H. J. Muller to do genetics and was remembered by A. H. Sturtevant as the source of the earliest suggestion that linkage might be related to the exchange of parts between homologous chromosomes. Here we also put forward evidence that it had a major influence on the statistician and geneticist R. A. Fisher at the time he was a mathematics student at Cambridge. © 2013 by the Genetics Society of America. Source

Discover hidden collaborations