San Francisco, CA, United States

California Institute for Regenerative Medicine

www.cirm.ca.gov
San Francisco, CA, United States

The California Institute for Regenerative Medicine was created in 2004 after 59% of California voters approved California Proposition 71 that governs the allocation of the $3 billion authorized to fund stem cell research in California. The agency was authorized to distribute the money in grants, funded by bonds, over a ten-year period to institutions and scientists throughout California that focused on advancing stem cell research and regenerative medicine. The mission of CIRM is: To support and advance stem cell research and regenerative medicine under the highest ethical and medical standards for the discovery and development of cures, therapies, diagnostics and research technologies to relieve human suffering from chronic disease injury. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

News Article | April 25, 2017
Site: www.eurekalert.org

Irvine, Calif., April 24, 2017 -- Using human skin cells, University of California, Irvine neurobiologists and their colleagues have created a method to generate one of the principle cell types of the brain called microglia, which play a key role in preserving the function of neural networks and responding to injury and disease. The finding marks an important step in the use of induced pluripotent stem (iPS) cells for targeted approaches to better understand and potentially treat neurological diseases such as Alzheimer's. These iPS cells are derived from existing adult skin cells and show increasing utility as a promising approach for studying human disease and developing new therapies. Skin cells were donated from patients at the UCI Alzheimer's Disease Research Center. The study, led by Edsel Abud, Wayne Poon and Mathew Blurton Jones of UCI, used a genetic process to reprogram these cells into a pluripotent state capable of developing into any type of cell or tissue of the body. The researchers then guided these pluripotent cells to a new state by exposing the cells to a series of differentiation factors which mimicked the developmental origin of microglia. The resulting cells act very much like human microglial cells. Their study appears in the current issue of Neuron. In the brain, microglia mediate inflammation and the removal of dead cells and debris. These cells make up 10- to 15-percent of brain cells and are needed for the development and maintenance of neural networks. "Microglia play an important role in Alzheimer's and other diseases of the central nervous system. Recent research has revealed that newly discovered Alzheimer's-risk genes influence microglia behavior. Using these cells, we can understand the biology of these genes and test potential new therapies," said Blurton-Jones, an assistant professor of the Department of Neurobiology & Behavior and Director of the ADRC iPS Core. "Scientists have had to rely on mouse microglia to study the immunology of AD. This discovery provides a powerful new approach to better model human disease and develop new therapies," added Poon, a UCI MIND associate researcher. Along those lines, the researchers examined the genetic and physical interactions between Alzheimer's disease pathology and iPS-microglia. They are now using these cells in three-dimensional brain models to understand how microglia interact with other brain cells and influence AD and the development of other neurological diseases. "Our findings provide a renewable and high-throughput method for understanding the role of inflammation in Alzheimer's disease using human cells," said Abud, an M.D./Ph.D. student. "These translational studies will better inform disease-modulating therapeutic strategies." Blurton Jones, Abud and Poon are with UCI's Institute for Memory Impairments and Neurological Disorders (UCI MIND). Ricardo Ramirez, Eric Martinez, Cecilia Nguyen, Sean Newman, Vanessa Scarfone, Samuel E. Marsh, Cristhian Fimbres, Chad A. Caraway, Ali Mortazavi, Michael Cahalan, Brian Cummings, Gianna Fote, Andriy Yeromin and Anshu Agrawal with UCI; Luke Healy and Jack Antel with McGill University, Montreal; Rakez Kayed with the University of Texas Medical Branch, Galveston, Texas; Karen Gylys with UCLA; and Abdullah Madany and Monica Carson with UC Riverside contributed to the study. The National Institutes of Health, the California Institute for Regenerative Medicine, and the Susan Scott Foundation provided support.


News Article | May 12, 2017
Site: www.prnewswire.com

Tim Henry, M.D., Director, Division of Cardiology in the Heart Institute at Cedars-Sinai Medical Center and Co-Principal Investigator of the ALLSTAR Trial, added, "We are encouraged to see reductions in left ventricular volume measures in the CAP-1002 treated patients, an important indicator of reverse remodeling of the heart. These findings support the biological activity of CAP-1002." Following Capricor's recent report of positive six-month data on clinical measures of skeletal muscle performance and cardiac biomarkers in the ongoing randomized 25-patient Phase I/II HOPE Trial of CAP-1002 in boys and young men with Duchenne muscular dystrophy (DMD), the Company plans to initiate enrollment into a randomized, double-blind, placebo-controlled, repeat-dose clinical trial of intravenous CAP-1002 in DMD in the second half of 2017, subject to regulatory approval. This anticipated trial will primarily evaluate skeletal (non-cardiac) muscle function. "The lack of a clear difference in the change in scar size from baseline to six months between the active and control groups in the interim observations from ALLSTAR was unexpected. These results diverge from the consistent and extensive record of activity observed with our cell technology in the setting of cardiac fibrosis as demonstrated by both preclinical and clinical studies, and we hope to gain an understanding of the factors that led to these observations through the conduct of further analyses," said Linda Marbán, president and CEO of Capricor. "Although we are disappointed, the favorable safety profile demonstrated by CAP-1002 in ALLSTAR supports the prospect of its chronic, repeat administration in patients with Duchenne muscular dystrophy. Also, the potent anti-inflammatory properties of CAP-1002 may be well-suited to mitigate DMD progression, for which chronic inflammation is believed to play a causative role," added Dr. Marbán. Capricor plans to reduce the scope of its operations, including the size of its workforce, in order to focus its financial resources primarily on its DMD program. Capricor management will hold a conference call at 5:00 a.m. PDT / 8:00 a.m. EDT today. The live call may be accessed by dialing (866) 868-1282 (domestic) or (847) 413-2405 (international) and by using the passcode 7330466. Access to the live webcast as well as the link to the replay of the call can be found at http://wsw.com/webcast/cc/capr2. The webcast will be archived for approximately 30 days. As previously announced, on May 15, 2017, Capricor will report its financial results for the first quarter of 2017. Capricor Therapeutics, Inc. (NASDAQ: CAPR) is a clinical-stage biotechnology company developing first-in-class biological therapies for cardiac and other medical conditions. Capricor's lead candidate, CAP-1002, is a cell-based candidate currently in clinical development for the treatment of Duchenne muscular dystrophy, myocardial infarction (heart attack), and heart failure. Capricor is also exploring the potential of CAP-2003, a cell-free, exosome-based candidate, to treat a variety of disorders. For more information, visit www.capricor.com. The ALLSTAR Trial is funded in part by the California Institute for Regenerative Medicine. Statements in this press release regarding the efficacy, safety, and intended utilization of Capricor's product candidates; the initiation, conduct, size, timing and results of discovery efforts and clinical trials; the pace of enrollment of clinical trials; plans regarding regulatory filings, future research and clinical trials; plans regarding current and future collaborative activities and the ownership of commercial rights; scope, duration, validity and enforceability of intellectual property rights; future royalty streams, expectations with respect to the expected use of proceeds from the recently completed offerings and the anticipated effects of the offerings, and any other statements about Capricor's management team's future expectations, beliefs, goals, plans or prospects constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words "believes," "plans," "could," "anticipates," "expects," "estimates," "should," "target," "will," "would" and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements. More information about these and other risks that may impact Capricor's business is set forth in Capricor's Annual Report on Form 10-K for the year ended December 31, 2016, as filed with the Securities and Exchange Commission on March 16, 2017, and in its Registration Statement on Form S-3, as filed with the Securities and Exchange Commission on September 28, 2015, together with prospectus supplements thereto. All forward-looking statements in this press release are based on information available to Capricor as of the date hereof, and Capricor assumes no obligation to update these forward-looking statements. CAP-1002 is an Investigational New Drug and is not approved for any indications. Capricor's exosomes technology, including CAP-2003, has not yet been approved for clinical investigation. For more information, please contact: To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/capricor-therapeutics-provides-update-on-allstar-trial-300456715.html


"These new follow-up results based on MRI scans are very encouraging, and strongly suggest that AST-OPC1 cells have engrafted in these patients post-implantation and have the potential to prevent lesion cavity formation, possibly reducing long-term spinal cord tissue deterioration after spinal cord injury," said Dr. Edward Wirth, Chief Medical Officer of Asterias. "Moreover, these new results add to the overall body of data supporting AST-OPC1's safety, and are consistent with safety data from our previous Phase 1 study in thoracic spinal cord injury and our extensive preclinical studies in more than 3,000 animals." Under the study protocol, patients  are  monitored  by MRI scans at regular intervals  over  12  months  in order to  assess  status  of  the  injection  site  and surrounding tissues. The Company will discuss the MRI data in more detail on its first quarter 2017 conference call and webcast on May 11, 2017 at 4:30 p.m. Eastern / 1:30 p.m Pacific. For both "listen-only" participants and those participants who wish to take part in the question-and-answer session, the call can be accessed by dialing 800-533-7619 (U.S./Canada) or 785-830-1923 (international) five minutes prior to the start of the call and providing the Conference ID 7610291. To access the live webcast, go to http://asteriasbiotherapeutics.com/inv_events_presentations.php. The SCiStar trial is an open-label, single-arm trial testing three sequential escalating doses of AST-OPC1 administered at up to 20 million AST-OPC1 cells in as many as 35 patients with sub-acute, C-5 to C-7, motor complete (AIS-A or AIS-B) cervical SCI. These individuals have essentially lost all movement below their injury site and experience severe paralysis of the upper and lower limbs. AIS-A patients have lost all motor and sensory function below their injury site, while AIS-B patients have lost all motor function but may retain some minimal sensory function below their injury site. AST-OPC1 is being administered 14 to 30 days post-injury. Patients will be followed by neurological exams and imaging procedures to assess the safety and activity of the product. The study is being conducted at six centers in the U.S. and the company plans to increase this to up to 12 sites to accommodate the expanded patient enrollment. Clinical sites involved in the study include the Medical College of Wisconsin in Milwaukee, Shepherd Medical Center in Atlanta, University of Southern California (USC) jointly with Rancho Los Amigos National Rehabilitation Center in Los Angeles, Indiana University, Rush University Medical Center in Chicago and Santa Clara Valley Medical Center in San Jose jointly with Stanford University. Asterias has received a Strategic Partnerships Award grant from the California Institute for Regenerative Medicine, which provides $14.3 million of non-dilutive funding for the Phase 1/2a clinical trial and other product development activities for AST-OPC1. Additional information on the Phase 1/2a trial, including trial sites, can be found at www.clinicaltrials.gov, using Identifier NCT02302157, and at the SCiStar Study Website (www.SCiStar-study.com). AST-OPC1, an oligodendrocyte progenitor population derived from human embryonic stem cells, has been shown in animals and in vitro to have three potentially reparative functions that address the complex pathologies observed at the injury site of a spinal cord injury. These activities of AST-OPC1 include production of neurotrophic factors, stimulation of vascularization, and induction of remyelination of denuded axons, all of which are critical for survival, regrowth and conduction of nerve impulses through axons at the injury site. In preclinical animal testing, AST-OPC1 administration led to remyelination of axons, improved hindlimb and forelimb locomotor function, dramatic reductions in injury-related cavitation and significant preservation of myelinated axons traversing the injury site. In a previous Phase 1 clinical trial, five patients with neurologically complete, thoracic spinal cord injury were administered two million AST-OPC1 cells at the spinal cord injury site 7-14 days post-injury. They also received low levels of immunosuppression for the next 60 days. Delivery of AST-OPC1 was successful in all five subjects with no serious adverse events associated with AST-OPC1. No evidence of rejection of AST-OPC1 was observed in detailed immune response monitoring of all patients. In four of the five patients, serial MRI scans indicated that reduced spinal cord cavitation may have occurred. Based on the results of this study, Asterias received clearance from FDA to progress testing of AST-OPC1 to patients with cervical spine injuries, which represents the first targeted population for registration trials. Asterias Biotherapeutics, Inc. is a biotechnology company pioneering the field of regenerative medicine. The company's proprietary cell therapy programs are based on its pluripotent stem cell and immunotherapy platform technologies. Asterias is presently focused on advancing three clinical-stage programs which have the potential to address areas of very high unmet medical need in the fields of neurology and oncology. AST-OPC1 (oligodendrocyte progenitor cells) is currently in a Phase 1/2a dose escalation clinical trial in spinal cord injury. AST-VAC1 (antigen-presenting autologous dendritic cells) is undergoing continuing development by Asterias based on promising efficacy and safety data from a Phase 2 study in Acute Myeloid Leukemia (AML), with current efforts focused on streamlining and modernizing the manufacturing process. AST-VAC2 (antigen-presenting allogeneic dendritic cells) represents a second generation, allogeneic cancer immunotherapy. The company's research partner, Cancer Research UK, plans to begin a Phase 1/2a clinical trial of AST-VAC2 in non-small cell lung cancer in 2017. Additional information about Asterias can be found at www.asteriasbiotherapeutics.com. Statements pertaining to future financial and/or operating and/or clinical research results, future growth in research, technology, clinical development, and potential opportunities for Asterias, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the businesses of Asterias, particularly those mentioned in the cautionary statements found in Asterias' filings with the Securities and Exchange Commission. Asterias disclaims any intent or obligation to update these forward-looking statements. To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/new-mri-data-from-asterias-ongoing-scistar-clinical-study-indicates-ast-opc1-cells-prevent-formation-of-damaging-lesion-cavities-in-patients-suffering-severe-spinal-cord-injury-300455768.html


SHANGHAI, China and CUPERTINO, Calif., May 08, 2017 (GLOBE NEWSWIRE) -- Cellular Biomedicine Group Inc. (NASDAQ:CBMG) (“CBMG” or the “Company”), clinical-stage biopharmaceutical firm engaged in the development of effective immunotherapies for cancer and stem cell therapies for degenerative diseases, today reported financial results for the first quarter ended March 31, 2017 and provided business highlights. “The first quarter of 2017 was very productive, with several key achievements, including the commencement of our second Phase I CAR-T clinical trial utilizing CBMG’s proprietary and optimized CD19 construct, for the treatment of adult patients with relapsed or refractory CD19+ B-cell Acute Lymphoblastic Leukemia (ALL),” commented Tony Liu, Chief Executive Officer of CBMG. “The award of $2.29 million from the California Institute for Regenerative Medicine (CIRM) to support pre-clinical studies of AlloJoinTM in the U.S., moves forward our endeavor into the U.S. market and the development of an off-the-shelf stem cell product to treat Knee Osteoarthritis (KOA). The signing of a collaboration with GE Healthcare Life Sciences China to establish a joint laboratory within our own GMP facilities in Shanghai credits our GMP stature and capabilities. We are determined to build on our accomplishments from the first quarter to continue to strengthen our innovative pipelines and move our clinical assets into later stage development.  We believe we are ahead of the competitive curve in addressing the manufacturing barriers to delivering consistent clinical grade cell therapies which have the potential to address the large cancer and knee osteoarthritis markets.” About Cellular Biomedicine Group Cellular Biomedicine Group, Inc. (NASDAQ:CBMG) develops proprietary cell therapies for the treatment of cancer and degenerative diseases. We conduct immuno-oncology and stem cell clinical trials in China using products from our integrated GMP laboratory. Our GMP facilities in China, consisting of twelve independent cell production lines, are designed and managed according to both China and U.S. GMP standards.  CBMG recently commenced two Phase I human clinical trials in China using CAR-T to treat relapsed/refractory CD19+ B-cell Acute Lymphoblastic Leukemia (ALL) and Refractory Diffuse Large B-cell Lymphoma (DLBCL) as well as an ongoing Phase I trial in China for AlloJoinTM (CBMG’s “Off-the-Shelf” Allogeneic Human Adipose-derived Mesenchymal Stem Cell) for the treatment of Knee Osteoarthritis (KOA). CBMG was recently awarded $2.29 million from the California Institute for Regenerative Medicine (CIRM) to support pre-clinical studies of AlloJoinTM for Knee Osteoarthritis in the United States. The Company also recently announced a strategic partnership with GE Healthcare Life Sciences China to establish a joint technology laboratory to develop control processes for the manufacture of CAR-T and stem cell therapies. To learn more about CBMG, please visit www.cellbiomedgroup.com. Forward-Looking Statements Statements in this press release relating to plans, strategies, trends, specific activities or investments, and other statements that are not descriptions of historical facts may be forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking information is inherently subject to risks and uncertainties, and actual results could differ materially from those currently anticipated due to a number of factors, which include risks inherent in doing business, trends affecting the global economy, including the devaluation of the RMB by China in August 2015 and other risks detailed from time to time in CBMG’s reports filed with the Securities and Exchange Commission, quarterly reports on form 10-Q, current reports on form 8-K and annual reports on form 10-K. Forward-looking statements may be identified by terms such as "may," "will," "expects," "plans," "intends," "estimates," "potential," or "continue," or similar terms or the negative of these terms. Although CBMG believes the expectations reflected in the forward-looking statements are reasonable, they cannot guarantee that future results, levels of activity, performance or achievements will be obtained. CBMG does not have any obligation to update these forward-looking statements other than as required by law.


Cunningham C.L.,University of California at Davis | Martinez-Cerdeno V.,University of California at Davis | Martinez-Cerdeno V.,California Institute for Regenerative Medicine | Noctor S.C.,University of California at Davis
Journal of Neuroscience | Year: 2013

Neurogenesis must be properly regulated to ensure that cell production does not exceed the requirements of the growing cerebral cortex, yet our understanding of mechanisms that restrain neuron production remains incomplete. We investigated the function of microglial cells in the developing cerebral cortex of prenatal and postnatal macaques and rats and show that microglia limit the production of cortical neurons by phagocytosing neural precursor cells. We show that microglia selectively colonize the cortical proliferative zones and phagocytose neural precursor cells as neurogenesis nears completion. We found that deactivating microglia in utero with tetracyclines or eliminating microglia from the fetal cerebral cortex with liposomal clodronate significantly increased the number of neural precursor cells, while activating microglia in utero through maternal immune activation significantly decreased the number of neural precursor cells. These data demonstrate that microglia play a fundamental role in regulating the size of the precursor cell pool in the developing cerebral cortex, expanding our understanding of the mechanisms that regulate cortical development. Furthermore, our data suggest that any factor that alters the number or activation state of microglia in utero can profoundly affect neural development and affect behavioral outcomes. © 2013 the authors.


Li G.,California Institute for Regenerative Medicine | Fang L.,Abcam | Fernandez G.,California Institute for Regenerative Medicine | Pleasure S.,California Institute for Regenerative Medicine
Neuron | Year: 2013

Adult neurogenesis represents a unique form of plasticity in the dentate gyrus requiring the presence oflong-lived neural stem cells (LL-NSCs). However, the embryonic origin of these LL-NSCs remains unclear. The prevailing model assumes that the dentate neuroepithelium throughout the longitudinal axis of the hippocampus generates both the LL-NSCs and embryonically produced granule neurons. Here we show that the NSCs initially originate from the ventral hippocampus during late gestation and then relocate into the dorsal hippocampus. The descendants of these cells are the source for the LL-NSCs in the subgranular zone (SGZ). Furthermore, we show that the origin of these cells and their maintenance in the dentate are controlled by distinct sources of Sonic Hedgehog (Shh). The revelation of the complexity of both the embryonic origin of hippocampal LL-NSCs and the sources of Shh has important implications for the functions of LL-NSCs in the adult hippocampus


Martinez-Cerdeno V.,University of California at Davis | Martinez-Cerdeno V.,California Institute for Regenerative Medicine
Developmental Neurobiology | Year: 2017

Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017. © 2016 Wiley Periodicals, Inc.


Hashemi E.,California Institute for Regenerative Medicine | Ariza J.,California Institute for Regenerative Medicine | Rogers H.,California Institute for Regenerative Medicine | Noctor S.C.,University of California at Davis | Martinez-Cerdeno V.,University of California at Davis
Cerebral cortex (New York, N.Y. : 1991) | Year: 2017

The cognitive phenotype of autism has been correlated with an altered balance of excitation to inhibition in the cerebral cortex, which could result from a change in the number, function, or morphology of GABA-expressing interneurons. The number of GABAergic interneuron subtypes has not been quantified in the autistic cerebral cortex. We classified interneurons into 3 subpopulations based on expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. We quantified the number of each interneuron subtype in postmortem neocortical tissue from 11 autistic cases and 10 control cases. Prefrontal Brodmann Areas (BA) BA46, BA47, and BA9 in autism and age-matched controls were analyzed by blinded researchers. We show that the number of parvalbumin+ interneurons in these 3 cortical areas-BA46, BA47, and BA9-is significantly reduced in autism compared with controls. The number of calbindin+ and calretinin+ interneurons did not differ in the cortical areas examined. Parvalbumin+ interneurons are fast-spiking cells that synchronize the activity of pyramidal cells through perisomatic and axo-axonic inhibition. The reduced number of parvalbumin+ interneurons could disrupt the balance of excitation/inhibition and alter gamma wave oscillations in the cerebral cortex of autistic subjects. These data will allow development of novel treatments specifically targeting parvalbumin interneurons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


Knoepfler P.S.,University of California at Davis | Knoepfler P.S.,California Institute for Regenerative Medicine
Advanced Drug Delivery Reviews | Year: 2015

The phrase "bench-to-bedside" is commonly used to describe the translation of basic discoveries such as those on stem cells to the clinic for therapeutic use in human patients. However, there is a key intermediate step in between the bench and the bedside involving governmental regulatory oversight such as by the Food and Drug Administration (FDA) in the United States (US). Thus, it might be more accurate in most cases to describe the stem cell biological drug development process in this way: from bench to FDA to bedside. The intermediate development and regulatory stage for stem cell-based biological drugs is a multifactorial, continually evolving part of the process of developing a biological drug such as a stem cell-based regenerative medicine product. In some situations, stem cell-related products may not be classified as biological drugs in which case the FDA plays a relatively minor role. However, this middle stage is generally a major element of the process and is often colloquially referred to in an ominous way as "The Valley of Death". This moniker seems appropriate because it is at this point, and in particular in the work that ensues after Phase 1, clinical trials that most drug product development is terminated, often due to lack of funding, diseases being refractory to treatment, or regulatory issues. Not surprisingly, workarounds to deal with or entirely avoid this difficult stage of the process are evolving both inside and outside the domains of official regulatory authorities. In some cases these efforts involve the FDA invoking new mechanisms of accelerating the bench to beside process, but in other cases these new pathways bypass the FDA in part or entirely. Together these rapidly changing stem cell product development and regulatory pathways raise many scientific, ethical, and medical questions. These emerging trends and their potential consequences are reviewed here. © 2014 Elsevier B.V.


Yuen B.T.K.,University of California at Davis | Yuen B.T.K.,California Institute for Regenerative Medicine | Knoepfler P.S.,University of California at Davis | Knoepfler P.S.,California Institute for Regenerative Medicine
Cancer Cell | Year: 2013

A host of cancer types exhibit aberrant histone modifications. Recently, distinct and recurrent mutations in a specific histone variant, histone H3.3, have been implicated in a high proportion of malignant pediatric brain cancers. The presence of mutant H3.3 histone disrupts epigenetic posttranslational modifications near genes involved in cancer processes and in brain function. Here, we review possible mechanisms by which mutant H3.3 histones may act to promote tumorigenesis. Furthermore, we discuss how perturbations in normal H3.3 chromatin-related and epigenetic functions may more broadly contribute to the formation of human cancers. © 2013 Elsevier Inc.

Loading California Institute for Regenerative Medicine collaborators
Loading California Institute for Regenerative Medicine collaborators