Marrakesh, Morocco
Marrakesh, Morocco

Time filter

Source Type

Grant
Agency: Cordis | Branch: FP7 | Program: CP-CSA | Phase: ENERGY.2013.10.1.10 | Award Amount: 21.20M | Year: 2014

Concentrating Solar Thermal Energy encompasses Solar Thermal Electricity (STE), Solar Fuels, Solar Process Heat and Solar Desalination that are called to play a major role in attaining energy sustainability in our modern societies due to their unique features: 1) Solar energy offers the highest renewable energy potential to our planet; 2) STE can provide dispatchable power in a technically and economically viable way, by means of thermal energy storage and/or hybridization, e.g. with biomass. However, significant research efforts are needed to achieve this goal. This Integrated Research Programme (IRP) engages all major European research institutes, with relevant and recognized activities on STE and related technologies, in an integrated research structure to successfully accomplish the following general objectives: a) Convert the consortium into a reference institution for concentrating solar energy research in Europe, creating a new entity with effective governance structure; b) Enhance the cooperation between EU research institutions participating in the IRP to create EU added value; c) Synchronize the different national research programs to avoid duplication and to achieve better and faster results; d) Accelerate the transfer of knowledge to industry in order to maintain and strengthen the existing European industrial leadership in STE; e) Expand joint activities among research centres by offering researchers and industry a comprehensive portfolio of research capabilities, bringing added value to innovation and industry-driven technology; f) Establish the European reference association for promoting and coordinating international cooperation in concentrating solar energy research. To that end, this IRP promotes Coordination and Support Actions (CSA) and, in parallel, performs Coordinated Projects (CP) covering the full spectrum of current concentrating solar energy research topics, selected to provide the highest EU added value and filling the gaps among national programs.


Grant
Agency: Cordis | Branch: FP7 | Program: CSA-CA | Phase: KBBE.2010.3.5-02 | Award Amount: 1.26M | Year: 2011

More than water scarcity, diseases and civil wars, Africa is also the least wealthy continent, in terms of economic and financial resources. These combined and tightly linked problems have led to a restricted range of choices, affordable for African countries, to deal particularly with the water issue, as a major topic. Polluted water treatment before use has been their almost unique solution to deal with a growing water scarcity. The treatment of water and elimination of pollutants, mainly pathogenic organisms, xenobiotics and heavy metals, although itself presents significant challenges, is crucial for human health and environmental considerations. However, most regions in developing countries cannot afford the costs of advanced and specialized systems. Numerous water cleaning methods are based in natural, plants or micro-organisms, biochemical processes. Biotechnology is a useful tool that is delivering improved products and process for environmental sustainability, and promises a range of benefits to manage the industrial WW economically and effectively around the world. Some biotechnological techniques are quite sophisticated but others are simple, cost effective and adapted to local conditions and resources of developing countries. These natural biological treatment systems include lagooning, land treatment, phytodepuration, or constructed wetlands systems. They can be applied as secondary or tertiary purification treatment, allowing the removal of pathogenic microorganisms and the degradation of the organic pollutants, so that waste water can be recycled for irrigation and domestic use and hence reduce the pressure on the hydric resources. Other biotechnological techniques to be taken into account within this proposal are biofiltration, membrane bioreactors and algae and other aquatic crops application for wastewater purification.


Grant
Agency: Cordis | Branch: FP7 | Program: CSA-SA | Phase: INCO.2013-9.1 | Award Amount: 1.13M | Year: 2013

ETRERA 2020 - Empowering Trans-mediterranean Renewable Energy Research Alliance for 2020 energy targets is a project aimed at face front the future energy needs in the Euro Mediterranean area by reinforcing creating a collaborative research/innovation network for supporting renewable energy sources (RES) technologies development and application, in accordance with EU policy addresses. The ETRERA2020 idea is to improve S&T and entrepreneurial relationships between European Member States and the neighbouring Mediterranean countries in the strategic field of renewable energy production, distribution and storage by a range of activities targeted to bridging the existing gap between research and innovation. ETRERA 2020 will address its efforts not on the societal challenge: Secure, clean and efficient energy in a general way, because this modus operandi will not bring any concrete result since it is too wide. It aims to focus on the below described specific technologies: wind, PV, grid connection and solar thermal.


Ahboucha S.,Cadi Ayyad University
Current Molecular Pharmacology | Year: 2011

Cerebral complications of liver failure either due to chronic or acute manifestations lead to a neurological disorder known as Hepatic encephalopathy (HE). Neurosteroids, synthesized in the brain mainly by astrocytes but also in other brain cells independently from peripheral steroidal sources such as adrenal and gonads, are suggested to play a role in the pathogenesis of HE. The mechanisms by which neurosteroids affect brain function are not totally elucidated but may involve both genomic and non genomic effects. On the one hand, neurosteroids bind and modulate different types of neuronal memebrane receptors. While neurosteroids may affect directly postsynaptic receptors including GABAA, 5-HT3, NMDA, glycine, and opioid receptors which have been involved in HE, neurosteroids effects through GABAA receptors may also compromise indirectly the function of neurons networking with GABAergic interneurons. On the other hand, some neurosteroids bind to intracellular receptors through which they also regulate gene expression, and there is substantial evidence confirming that expression of genes coding for key astrocytic and neuronal proteins is altered in HE. The mechanisms that trigger brain neurosteroid changes in HE are not yet established, but could involve (i) ammonia and manganese (in chronic HE)-induced translocator protein (TSPO) activation, (ii) neuroinflammation or (iii) blood-brain transfer of lipophylic neuroactive steroids. The present review summarizes evidence for the involvement of neurosteroids in HE and possible mechanisms for their altered brain production and central effects in human and experimental HE. © 2011 Bentham Science Publishers Ltd.


Benbrik R.,Cadi Ayyad University | Chen C.-H.,National Cheng Kung University | Nomura T.,Korea Institute for Advanced Study
Physical Review D - Particles, Fields, Gravitation and Cosmology | Year: 2016

ATLAS and CMS recently showed the first results from run 2 of the Large Hadron Collider (LHC) at s=13 TeV. A resonant bump at a mass of around 750 GeV in the diphoton invariant mass spectrum was indicated and the corresponding diphoton production cross section is around 3-10 fb. Motivated by the LHC diphoton excess, we propose that the possible resonance candidate is a Higgs singlet. To produce the Higgs singlet via the gluon-gluon fusion process, we embed the Higgs singlet in the framework of the vector-like triplet quark (VLTQ) model. As a result, the Higgs singlet decaying to the diphoton final state is via VLTQ loops. Using the enhanced number of new quarks and new Yukawa couplings of the VLTQs and Higgs singlet, we successfully explain the diphoton production cross section. We find that the width of the Higgs singlet is below 1 GeV, its production cross section can be of the order of 1 pb at s=13 TeV, and the branching ratio for it decaying to a diphoton is around 0.017 and is insensitive to the masses of VLTQs and new Yukawa couplings. We find a strong correlation between the Higgs Yukawa couplings to s-b and c-t; the resulted branching ratio for t→ch can be 1.1×10-4 when the constraint from Bs oscillation is applied. With the constrained parameter values, the signal strength for the standard model Higgs decaying to a diphoton is μγγ<1.18, which is consistent with the current measurements at ATLAS and CMS. © 2016 American Physical Society.


El Beid S.,Cadi Ayyad University | Doubabi S.,Cadi Ayyad University
IEEE Transactions on Industrial Electronics | Year: 2014

The design and the implementation of a fuzzy output tracking control applied to a boost converter that operates in large-signal domain are presented. Unlike conventional fuzzy controller design which addresses only small-signal system control and stability, the proposed controller ensures good tracking performances and overall large-signal stability of the system over the whole operating space. This is thanks to: i) The high prediction accuracy of the Takagi-Sugeno fuzzy approximator (TSFA) with twelve affine functions; ii) the possibility to automatically derive the corresponding small-signal model under a wide range of operating conditions; iii) the advantage of integral controllers; and iv) the LMI approach to carry out the overall large-signal stability. After introducing an added integral state of the output tracking error, the resulting augmented system is represented into a Takagi-Sugeno fuzzy model (TSFM). Parallel distributed compensation (PDC) concept is applied to design the state-feedback based control law whereby the control gains are off-line pre-solved by the mean of the linear quadratic regulator (LQR) technique. Sufficient stability conditions are expressed in terms of LMIs. Experimental results using dSPACE DS1104 and a boost converter for different operating conditions, both in tracking and regulation mode; illustrate the efficiency, the robustness and the flexibility of the proposed approach relatively to a classical PID controller. © 1982-2012 IEEE.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SSH-2010-2.2-1 | Award Amount: 3.27M | Year: 2011

The EU has experienced successive enlargements in recent years with the incorporation of new countries. These have changed the EU map, broadening frontiers and thus appearing new neighbouring countries. The integration of them offers new opportunities but also implies some risks. Even though the ENP has demonstrated to be an integration tool, which has provided an effective and clear framework to establish cooperation links within neighbouring countries, some are important areas with considerable potential for further progress. SEARCH will focus attention on some areas which so far have been neglected in the analysis of the impact of the ENP but which are of central interest in the economic literature on cohesion. Divided in 8 WPs. WP1 will obtain a background framework. From WP2 to WP5, scientific research will be carried out analyzing different aspects that ENP should strengthen in the future. WP6 will collect and analyse the policy implications from previous research. WP7 will communicate the research results and the policy recommendations through the correct communication channels to the potential users. WP8 will ensure the coordination of the SEARCH project consortium work with the previous experience of UB-AQR. It includes a remarkable well-balanced consortium with partners from 16 different countries, different backgrounds and expertise, giving an extensive vision to focus adequately to the projects objective of identifying policies that will strengthen the relationship between the EU and the NCs. Main impacts will be the advance on the research on ENP state of the art, obtaining relevant results for contributing to the formulation of future ENP, the involvement of relevant communities, stakeholders and practitioners in ENP research, the critical mass of resources involved and the establishment of a basis to develop new strategic partnership among EU and NCs. In short, SEARCH is a well defined project, relevant to the topic and with an experienced consortium


Patent
French National Center for Scientific Research and Cadi Ayyad University | Date: 2013-01-23

The present invention relates to new actinomycete strain composition which produces an antimicrobial siderophore of the catecholate family called Viridomycin G.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-02-2015 | Award Amount: 4.56M | Year: 2016

The main objective of the SOLPART project is to develop, at pilot scale, a high temperature (950C) 24h/day solar process suitable for particle treatment in energy intensive industries (e.g. cement or lime industries). The project aims at supplying totally or partially the thermal energy requirement for CaCO3 calcination by high temperature solar heat thus reducing the life cycle environmental impacts of the process and increasing the attractiveness of renewable heating technologies in process industries. This will be achieved by the demonstration of a pilot scale solar reactor suitable for calcium carbonate decomposition (Calcination reaction: CaCO3 = CaO \ CO2) and to simulate at prototype scale a 24h/day industrial process (TRL 4-5) thereby requiring a high-temperature transport and storage system. The system will operate at 950C and will include a 30 kWth solar reactor producing 30 kg/h CaO and a 16h hot CaO storage. Life cycle environmental impacts of the solar-based solution in comparison with standard processes will be developed as well as economic evaluation. The project develops and merges three advanced technologies: high temperature solar reactor, transport of high-temperature solid materials and high temperature thermal storage. The synergy between these technologies lies in using the solar-treated particles as storage medium. The development of a such innovative technology for continuous particle processed by concentrated solar energy at about 950C is unique in the world. Thanks to the solar unit integration in the industrial process (potentially combined with CO2 capture), this should result in the considerable reduction of the carbon footprint of the CO2 emitter industries and open a new market for renewable energies.


Patent
Cadi Ayyad University and French National Center for Scientific Research | Date: 2012-07-20

Novel actinomycete strain composition and its use.

Loading Cadi Ayyad University collaborators
Loading Cadi Ayyad University collaborators