Marrakesh, Morocco

Cadi Ayyad University

www.uca.ma
Marrakesh, Morocco

Time filter

Source Type

CrowdReviews.com Partnered with Madridge Conferences to Announce International Conference on Immunology and Immunotechnology Immunology-2017 features highly enlightening and interactive sessions to encourage the exchange of ideas across a wide range of disciplines in the field of immunology. Immunology-2017 mainly showcases comprehensive approaches in immunology study and research. The field of Immunology is growing rapidly and its development is making tremendous impacts in medical sciences. Immunology-2017 invites the contributions related to immunology research. You can submit your work in these broad themes. Conference mainly focuses on: Clinical and cellular immunology Tumour and cancer immunology Neuro immunology Parasitology Autoimmunity and Therapathies Mucosal immunology Reproductive Immunology Immunobiology Infection & Inflammatory Disease Rheumatology Haematopoiesis Transplantation Immunology Virology Immunodermatology Molecular and Structural Immunology Veterinary Immunology and Immunopathology Allergology and Immunology All the abstracts should be submitted through Immunology-2017 Speakers: · Nadir Kadri, Karolinska Institute, Sweden · Pawel Gajdanowicz, Wroclaw Medical University, Poland · Joel Babdor, Stanford University School of Medicine, USA · Kwan Chow, Washington University, USA · Abdallah Badou, Cadi Ayyad University, Morocco Immunology-2017 Organizing Committee: · Carmen Fernández , Stockholm University, Sweden · Carl Borrebaeck, Lund University, Sweden · SY Seong, Seoul National University College of Medicine, South Korea · Shi, Guo-Ping, Brigham and Women's Hospital, USA · Gideon Berke, Weizmann Institute of Science, Isreal · Eyad Elkord, United Arab Emirates University, United ArabEmirates · Noah Isakov, Ben Gurion University of the Negev, Isreal · Joel Pomerantz, The Johns Hopkins University School of Medicine, USA · NanShan Chang, Institute of Molecular Medicine, Taiwan · Hisaya Akiba, Juntendo University School of Medicine, Japan · Ricardo Luiz Dantas Machado, Evandro Chagas Institute, Brazil Immunology-2017 is organizing an outstanding Scientific Exhibition/Program and anticipates the world’s leading specialists involved in Immunology Research. They welcome Sponsorship and Exhibitions from the Companies and Organizations who wish to showcase their products at this exciting event. Register for the conference and book your slots at: Contact person: Sumanjani immunology@madridge.com immunology@madridge.net Naples, FL, May 09, 2017 --( PR.com )-- International Conference Immunology and Immunotechnology is going to be held during November 1-3, 2017 in Barcelona, Spain.Immunology-2017 features highly enlightening and interactive sessions to encourage the exchange of ideas across a wide range of disciplines in the field of immunology. Immunology-2017 mainly showcases comprehensive approaches in immunology study and research. The field of Immunology is growing rapidly and its development is making tremendous impacts in medical sciences.Immunology-2017 invites the contributions related to immunology research. You can submit your work in these broad themes.Conference mainly focuses on:Clinical and cellular immunologyTumour and cancer immunologyNeuro immunologyParasitologyAutoimmunity and TherapathiesMucosal immunologyReproductive ImmunologyImmunobiologyInfection & Inflammatory DiseaseRheumatologyHaematopoiesisTransplantation ImmunologyVirologyImmunodermatologyMolecular and Structural ImmunologyVeterinary Immunology and ImmunopathologyAllergology and ImmunologyAll the abstracts should be submitted through online abstract submission or can be mailed at immunology@madridge.com Immunology-2017 Speakers:· Nadir Kadri, Karolinska Institute, Sweden· Pawel Gajdanowicz, Wroclaw Medical University, Poland· Joel Babdor, Stanford University School of Medicine, USA· Kwan Chow, Washington University, USA· Abdallah Badou, Cadi Ayyad University, MoroccoImmunology-2017 Organizing Committee:· Carmen Fernández , Stockholm University, Sweden· Carl Borrebaeck, Lund University, Sweden· SY Seong, Seoul National University College of Medicine, South Korea· Shi, Guo-Ping, Brigham and Women's Hospital, USA· Gideon Berke, Weizmann Institute of Science, Isreal· Eyad Elkord, United Arab Emirates University, United ArabEmirates· Noah Isakov, Ben Gurion University of the Negev, Isreal· Joel Pomerantz, The Johns Hopkins University School of Medicine, USA· NanShan Chang, Institute of Molecular Medicine, Taiwan· Hisaya Akiba, Juntendo University School of Medicine, Japan· Ricardo Luiz Dantas Machado, Evandro Chagas Institute, BrazilImmunology-2017 is organizing an outstanding Scientific Exhibition/Program and anticipates the world’s leading specialists involved in Immunology Research. They welcome Sponsorship and Exhibitions from the Companies and Organizations who wish to showcase their products at this exciting event.Register for the conference and book your slots at: http://immunology.madridge.com/register.php Contact person:Sumanjani


News Article | May 22, 2017
Site: www.eurekalert.org

A University of Washington-led international team of astronomers has used data gathered by the Kepler Space Telescope to observe and confirm details of the outermost of seven exoplanets or-biting the star TRAPPIST-1. They confirmed that the planet, TRAPPIST-1h, orbits its star every 18.77 days, is linked in its orbital path to its siblings and is frigidly cold. Far from its host star, the planet is likely uninhabit-able -- but it may not always have been so. UW doctoral student Rodrigo Luger is lead author on a paper published May 22 in the journal Nature Astronomy. "TRAPPIST-1h was exactly where our team predicted it to be," Luger said. The researchers dis-covered a mathematical pattern in the orbital periods of the inner six planets, which was strongly suggestive of an 18.77 day period for planet h. "It had me worried for a while that we were seeing what we wanted to see. Things are almost never exactly as you expect in this field -- there are usually surprises around every corner, but theory and observation matched perfectly in this case." TRAPPIST-1 is a middle-aged, ultra cool dwarf star, much less luminous than the sun and only a bit larger than the planet Jupiter. The star, which is nearly 40 light-years or about 235 trillion miles away in the constellation of Aquarius, is named after the ground-based Transiting Planets and Planetesimals Small Telescope (TRAPPIST), the facility that first found evidence of planets around it in 2015. The TRAPPIST survey is led by Michael Gillon of the University of Liège, Belgium, who is also a coauthor on this research. In 2016, Gillon's team announced the detection of three planets or-biting TRAPPIST-1 and this number was upped to seven in a subsequent 2017 paper. Three of TRAPPIST-1's planets appear to be within the star's habitable zone, that swath of space around a star where a rocky planet could have liquid water on its surface, thus giving life a chance. Such exoplanets are detected when they transit, or pass in front of, their host star, blocking a measurable portion of the light. Gillon's team was able to observe only a single transit for TRAP-PIST-1h, the farthest-out of the star's seven progeny, prior to the data analyzed by Luger's team. Luger led a multi-institution international research team that studied the TRAPPIST-1 system more closely using 79 days of observation data from K2, the second mission of the Kepler Space Telescope. The team was able to observe and study four transits of TRAPPIST-1h across its star. The team used the K2 data to further characterize the orbits of the other six planets, help rule out the presence of additional transiting planets, and determine the rotation period and activity level of the star. They also discovered that TRAPPIST-1's seven planets appear linked in a complex dance known as an orbital resonance where their respective orbital periods are mathematically related and slightly influence each other. "Resonances can be tricky to understand, especially between three bodies. But there are simpler cases that are easier to explain," Luger said. For instance, closer to home, Jupiter's moons Io, Eu-ropa and Ganymede are set in a 1:2:4 resonance, meaning that Europa's orbital period is exactly twice that of Io, and Ganymede's is exactly twice that of Europa. These relationships, Luger said, suggested that by studying the orbital velocities of its neighbor planets they could predict the exact orbital velocity, and hence also orbital period, of TRAP-PIST-1h even before the K2 observations. Their theory proved correct when they located the planet in the K2 data. TRAPPIST-1's seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four reso-nant planets. The resonances are "self-correcting," Luger said, such that if one planet were to somehow be nudged off course, it would lock right back into resonance. "Once you're caught into this kind of stable resonance, it's hard to escape," he said. All of this, Luger said, indicates that these orbital connections were forged early in the life of the TRAPPIST-1 system, when the planets and their orbits were not fully formed. "The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step," Luger said. "This makes the system a great testbed for planet formation and migration theories." It also means that while TRAPPIST-1h is now extremely cold -- with an average temperature of 173 Kelvin (minus 148 F) -- it likely spent several hundred million years in a much warmer state, when its host star was younger and brighter. "We could therefore be looking at a planet that was once habitable and has since frozen over, which is amazing to contemplate and great for follow-up studies," Luger said. Luger said he has been working with data from the K2 mission for a while now, researching ways to reduce "instrumental noise" in its data resulting from broken reaction wheels -- small flywheels that help position the spacecraft -- that can overwhelm planetary signals. "Observing TRAPPIST-1 with K2 was an ambitious task," said Marko Sestovic, a doctoral stu-dent at the University of Bern and second author of the study. In addition to the extraneous sig-nals introduced by the spacecraft's wobble, the faintness of the star in the optical (the range of wavelengths where K2 observes) placed TRAPPIST-1h "near the limit of what we could detect with K2," he said. To make matters worse, Sestovic said, one transit of the planet coincided with a transit of TRAPPIST-1b, and one coincided with a stellar flare, adding to the difficulty of the observation. "Finding the planet was really encouraging," Luger said, "since it showed we can still do high-quality science with Kepler despite significant instrumental challenges." Luger's UW co-authors are astronomy doctoral students Ethan Kruse and Brett Morris, post-doctoral researcher Daniel Foreman-Mackey and professor Eric Agol (Guggenheim Fellow). Agol separately helped confirm the approximate mass of TRAPPIST-1 planets with a technique he and colleagues devised called "transit timing variations" that describes planets' gravitational tugs on one another. Luger said the TRAPPIST-1 system's relative nearness "makes it a prime target for follow-up and characterization with current and upcoming telescopes, which may be able to give us information about these planets' atmospheric composition." Contributing to this discovery are researchers at the University of Bern in Switzerland; Paris Di-derot and Paris Sorbonne Universities and the CEA Saclay in France; the University of Liège in Belgium; the University of Chicago; the University of California, San Diego; California Institute of Technology; the University of Bordeaux in France; the University of Cambridge in England; NASA's Ames Research Center, Goddard Space Flight Center, and Johnson Space Center; Mas-sachusetts Institute of Technology; the University of Central Lancashire in England; King Ab-dulaziz University in Saudi Arabia; Cadi Ayyad University in Morocco; and the University of Geneva in Switzerland. The research was funded by the NASA Astrobiology Institute via the UW-based Virtual Plane-tary Laboratory as well as a National Science Foundation Graduate Student Research Fellow-ship, the Swiss National Science Foundation, the Simons Foundation, the European Research Council and the UK Science and Technology Facilities Council, among other agencies. For more information, visit http://www. or contact Luger at 206-543-6276 or rodluger@uw.edu


News Article | May 24, 2017
Site: www.rdmag.com

A University of Washington-led international team of astronomers has used data gathered by the Kepler Space Telescope to observe and confirm details of the outermost of seven exoplanets orbiting the star TRAPPIST-1. They confirmed that the planet, TRAPPIST-1h, orbits its star every 18.77 days, is linked in its orbital path to its siblings and is frigidly cold. Far from its host star, the planet is likely uninhabitable — but it may not always have been so. UW doctoral student Rodrigo Luger is lead author on a paper published May 22 in the journal Nature Astronomy. "TRAPPIST-1h was exactly where our team predicted it to be," Luger said. The researchers discovered a mathematical pattern in the orbital periods of the inner six planets, which was strongly suggestive of an 18.77 day period for planet h. "It had me worried for a while that we were seeing what we wanted to see. Things are almost never exactly as you expect in this field — there are usually surprises around every corner, but theory and observation matched perfectly in this case." TRAPPIST-1 is a middle-aged, ultra cool dwarf star, much less luminous than the sun and only a bit larger than the planet Jupiter. The star, which is nearly 40 light-years or about 235 trillion miles away in the constellation of Aquarius, is named after the ground-based Transiting Planets and Planetesimals Small Telescope (TRAPPIST), the facility that first found evidence of planets around it in 2015. The TRAPPIST survey is led by Michael Gillon of the University of Liège, Belgium, who is also a coauthor on this research. In 2016, Gillon’s team announced the detection of three planets orbiting TRAPPIST-1 and this number was upped to seven in a subsequent 2017 paper. Three of TRAPPIST-1's planets appear to be within the star's habitable zone, that swath of space around a star where a rocky planet could have liquid water on its surface, thus giving life a chance. Such exoplanets are detected when they transit, or pass in front of, their host star, blocking a measurable portion of the light. Gillon's team was able to observe only a single transit for TRAPPIST-1h, the farthest-out of the star's seven progeny, prior to the data analyzed by Luger’s team. Luger led a multi-institution international research team that studied the TRAPPIST-1 system more closely using 79 days of observation data from K2, the second mission of the Kepler Space Telescope. The team was able to observe and study four transits of TRAPPIST-1h across its star. The team used the K2 data to further characterize the orbits of the other six planets, help rule out the presence of additional transiting planets, and determine the rotation period and activity level of the star. They also discovered that TRAPPIST-1's seven planets appear linked in a complex dance known as an orbital resonance where their respective orbital periods are mathematically related and slightly influence each other. "Resonances can be tricky to understand, especially between three bodies. But there are simpler cases that are easier to explain," Luger said. For instance, closer to home, Jupiter's moons Io, Europa and Ganymede are set in a 1:2:4 resonance, meaning that Europa's orbital period is exactly twice that of Io, and Ganymede's is exactly twice that of Europa. These relationships, Luger said, suggested that by studying the orbital velocities of its neighbor planets they could predict the exact orbital velocity, and hence also orbital period, of TRAPPIST-1h even before the K2 observations. Their theory proved correct when they located the planet in the K2 data. TRAPPIST-1's seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four resonant planets. The resonances are "self-correcting," Luger said, such that if one planet were to somehow be nudged off course, it would lock right back into resonance. "Once you're caught into this kind of stable resonance, it's hard to escape," he said. All of this, Luger said, indicates that these orbital connections were forged early in the life of the TRAPPIST-1 system, when the planets and their orbits were not fully formed. "The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step," Luger said. "This makes the system a great testbed for planet formation and migration theories." It also means that while TRAPPIST-1h is now extremely cold — with an average temperature of 173 Kelvin (minus 148 F) — it likely spent several hundred million years in a much warmer state, when its host star was younger and brighter. "We could therefore be looking at a planet that was once habitable and has since frozen over, which is amazing to contemplate and great for follow-up studies," Luger said. Luger said he has been working with data from the K2 mission for a while now, researching ways to reduce "instrumental noise" in its data resulting from broken reaction wheels — small flywheels that help position the spacecraft — that can overwhelm planetary signals. “Observing TRAPPIST-1 with K2 was an ambitious task,” said Marko Sestovic, a doctoral student at the University of Bern and second author of the study. In addition to the extraneous signals introduced by the spacecraft’s wobble, the faintness of the star in the optical (the range of wavelengths where K2 observes) placed TRAPPIST-1h “near the limit of what we could detect with K2,” he said. To make matters worse, Sestovic said, one transit of the planet coincided with a transit of TRAPPIST-1b, and one coincided with a stellar flare, adding to the difficulty of the observation. “Finding the planet was really encouraging,” Luger said, “since it showed we can still do high-quality science with Kepler despite significant instrumental challenges.” Luger's UW co-authors are astronomy doctoral students Ethan Kruse and Brett Morris, post-doctoral researcher Daniel Foreman-Mackey and professor Eric Agol (Guggenheim Fellow). Agol separately helped confirm the approximate mass of TRAPPIST-1 planets with a technique he and colleagues devised called "transit timing variations" that describes planets' gravitational tugs on one another. Luger said the TRAPPIST-1 system's relative nearness "makes it a prime target for follow-up and characterization with current and upcoming telescopes, which may be able to give us information about these planets' atmospheric composition." Contributing to this discovery are researchers at the University of Bern in Switzerland; Paris Diderot and Paris Sorbonne Universities and the CEA Saclay in France; the University of Liège in Belgium; the University of Chicago; the University of California, San Diego; California Institute of Technology; the University of Bordeaux in France; the University of Cambridge in England; NASA's Ames Research Center, Goddard Space Flight Center, and Johnson Space Center; Massachusetts Institute of Technology; the University of Central Lancashire in England; King Abdulaziz University in Saudi Arabia; Cadi Ayyad University in Morocco; and the University of Geneva in Switzerland. The research was funded by the NASA Astrobiology Institute via the UW-based Virtual Planetary Laboratory as well as a National Science Foundation Graduate Student Research Fellowship, the Swiss National Science Foundation, the Simons Foundation, the European Research Council and the UK Science and Technology Facilities Council, among other agencies.


News Article | May 23, 2017
Site: www.futurity.org

New data from the Kepler Space Telescope confirm what astronomers have thought about the  outermost of seven exoplanets orbiting the star Trappist-1. The planet, Trappist-1h, is linked in its orbital path to its siblings, and is frigidly cold. Far from its host star, the planet is likely uninhabitable—but may not always have been that way. “Trappist-1h was exactly where our team predicted it to be,” says Rodrigo Luger, a doctoral student at the University of Washington and lead author of the study in Nature Astronomy. Researchers discovered a mathematical pattern in the orbital periods of the inner six planets, which was strongly suggestive of an 18.77 day period for planet h. “It had me worried for a while that we were seeing what we wanted to see. Things are almost never exactly as you expect in this field—there are usually surprises around every corner, but theory and observation matched perfectly in this case.” Trappist-1 is a middle-aged, ultra cool dwarf star, much less luminous than the sun and only a bit larger than the planet Jupiter. The star, which is nearly 40 light-years or about 235 trillion miles away in the constellation of Aquarius, is named after the ground-based Transiting Planets and Planetesimals Small Telescope, the facility that first found evidence of planets around it in 2015. Study coauthor Michael Gillon of the University of Liège, Belgium, led the survey. In 2016, Gillon’s team announced the detection of three planets orbiting Trappist-1 and this number was upped to seven in a subsequent 2017 paper. Three of the star’s planets appear to be within the star’s habitable zone, that swath of space around a star where a rocky planet could have liquid water on its surface, thus giving life a chance. Such exoplanets are detected when they transit, or pass in front of, their host star, blocking a measurable portion of the light. Researchers were able to observe only a single transit for Trappist-1h, the farthest-out of the star’s seven progeny, prior to the data analyzed by Luger’s team. Astronomers studied the Trappist-1 system more closely using 79 days of observation data from K2, the second mission of the Kepler Space Telescope. The team was able to observe and study four transits of Trappist-1h across its star. The team used the K2 data to further characterize the orbits of the other six planets, help rule out the presence of additional transiting planets, and determine the rotation period and activity level of the star. They also discovered that Trappist-1’s seven planets appear linked in a complex dance known as an orbital resonance where their respective orbital periods are mathematically related and slightly influence each other. “Resonances can be tricky to understand, especially between three bodies. But there are simpler cases that are easier to explain,” Luger says. For instance, closer to home, Jupiter’s moons Io, Europa, and Ganymede are set in a 1:2:4 resonance, meaning that Europa’s orbital period is exactly twice that of Io, and Ganymede’s is exactly twice that of Europa. These relationships, suggested that by studying the orbital velocities of its neighbor planets they could predict the exact orbital velocity, and hence also orbital period, of TRAPPIST-1h even before the K2 observations. Their theory proved correct when they located the planet in the K2 data. Trappist-1’s seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four resonant planets. The resonances are “self-correcting,” Luger says, such that if one planet were to somehow be nudged off course, it would lock right back into resonance. “Once you’re caught into this kind of stable resonance, it’s hard to escape.” All of this indicates that these orbital connections were forged early in the life of the Trappist-1 system, when the planets and their orbits were not fully formed. “The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step,” Luger says. “This makes the system a great testbed for planet formation and migration theories.” It also means that while Trappist-1h is now extremely cold—with an average temperature of 173 Kelvin (minus 148 F)—it likely spent several hundred million years in a much warmer state, when its host star was younger and brighter. “We could therefore be looking at a planet that was once habitable and has since frozen over, which is amazing to contemplate and great for follow-up studies,” Luger says. Luger has been working with data from the K2 mission for a while now, researching ways to reduce “instrumental noise” in its data resulting from broken reaction wheels—small flywheels that help position the spacecraft — that can overwhelm planetary signals. “Observing Trappist-1 with K2 was an ambitious task,” says Marko Sestovic, a doctoral student at the University of Bern and second author of the study. In addition to the extraneous signals introduced by the spacecraft’s wobble, the faintness of the star in the optical (the range of wavelengths where K2 observes) placed Trappist-1h “near the limit of what we could detect with K2,” he says. To make matters worse, one transit of the planet coincided with a transit of Trappist-1b, and one coincided with a stellar flare, adding to the difficulty of the observation. “Finding the planet was really encouraging,” Luger says, “since it showed we can still do high-quality science with Kepler despite significant instrumental challenges.” The Trappist-1 system’s relative nearness “makes it a prime target for follow-up and characterization with current and upcoming telescopes, which may be able to give us information about these planets’ atmospheric composition,” Luger says. Contributing to this discovery are researchers at the University of Bern in Switzerland; Paris Diderot and Paris Sorbonne Universities and the CEA Saclay in France; the University of Liège in Belgium; the University of Chicago; the University of California, San Diego; California Institute of Technology; the University of Bordeaux in France; the University of Cambridge in England; NASA’s Ames Research Center, Goddard Space Flight Center, and Johnson Space Center; Massachusetts Institute of Technology; the University of Central Lancashire in England; King Abdulaziz University in Saudi Arabia; Cadi Ayyad University in Morocco; and the University of Geneva in Switzerland. The NASA Astrobiology Institute, the National Science Foundation Graduate Student Research Fellowship, the Swiss National Science Foundation, the Simons Foundation, the European Research Council, and the UK Science and Technology Facilities Council, among other agencies, funded the work.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-SA | Phase: INCO.2013-9.1 | Award Amount: 1.13M | Year: 2013

ETRERA 2020 - Empowering Trans-mediterranean Renewable Energy Research Alliance for 2020 energy targets is a project aimed at face front the future energy needs in the Euro Mediterranean area by reinforcing creating a collaborative research/innovation network for supporting renewable energy sources (RES) technologies development and application, in accordance with EU policy addresses. The ETRERA2020 idea is to improve S&T and entrepreneurial relationships between European Member States and the neighbouring Mediterranean countries in the strategic field of renewable energy production, distribution and storage by a range of activities targeted to bridging the existing gap between research and innovation. ETRERA 2020 will address its efforts not on the societal challenge: Secure, clean and efficient energy in a general way, because this modus operandi will not bring any concrete result since it is too wide. It aims to focus on the below described specific technologies: wind, PV, grid connection and solar thermal.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-CSA | Phase: ENERGY.2013.10.1.10 | Award Amount: 21.20M | Year: 2014

Concentrating Solar Thermal Energy encompasses Solar Thermal Electricity (STE), Solar Fuels, Solar Process Heat and Solar Desalination that are called to play a major role in attaining energy sustainability in our modern societies due to their unique features: 1) Solar energy offers the highest renewable energy potential to our planet; 2) STE can provide dispatchable power in a technically and economically viable way, by means of thermal energy storage and/or hybridization, e.g. with biomass. However, significant research efforts are needed to achieve this goal. This Integrated Research Programme (IRP) engages all major European research institutes, with relevant and recognized activities on STE and related technologies, in an integrated research structure to successfully accomplish the following general objectives: a) Convert the consortium into a reference institution for concentrating solar energy research in Europe, creating a new entity with effective governance structure; b) Enhance the cooperation between EU research institutions participating in the IRP to create EU added value; c) Synchronize the different national research programs to avoid duplication and to achieve better and faster results; d) Accelerate the transfer of knowledge to industry in order to maintain and strengthen the existing European industrial leadership in STE; e) Expand joint activities among research centres by offering researchers and industry a comprehensive portfolio of research capabilities, bringing added value to innovation and industry-driven technology; f) Establish the European reference association for promoting and coordinating international cooperation in concentrating solar energy research. To that end, this IRP promotes Coordination and Support Actions (CSA) and, in parallel, performs Coordinated Projects (CP) covering the full spectrum of current concentrating solar energy research topics, selected to provide the highest EU added value and filling the gaps among national programs.


Ahboucha S.,Cadi Ayyad University
Current Molecular Pharmacology | Year: 2011

Cerebral complications of liver failure either due to chronic or acute manifestations lead to a neurological disorder known as Hepatic encephalopathy (HE). Neurosteroids, synthesized in the brain mainly by astrocytes but also in other brain cells independently from peripheral steroidal sources such as adrenal and gonads, are suggested to play a role in the pathogenesis of HE. The mechanisms by which neurosteroids affect brain function are not totally elucidated but may involve both genomic and non genomic effects. On the one hand, neurosteroids bind and modulate different types of neuronal memebrane receptors. While neurosteroids may affect directly postsynaptic receptors including GABAA, 5-HT3, NMDA, glycine, and opioid receptors which have been involved in HE, neurosteroids effects through GABAA receptors may also compromise indirectly the function of neurons networking with GABAergic interneurons. On the other hand, some neurosteroids bind to intracellular receptors through which they also regulate gene expression, and there is substantial evidence confirming that expression of genes coding for key astrocytic and neuronal proteins is altered in HE. The mechanisms that trigger brain neurosteroid changes in HE are not yet established, but could involve (i) ammonia and manganese (in chronic HE)-induced translocator protein (TSPO) activation, (ii) neuroinflammation or (iii) blood-brain transfer of lipophylic neuroactive steroids. The present review summarizes evidence for the involvement of neurosteroids in HE and possible mechanisms for their altered brain production and central effects in human and experimental HE. © 2011 Bentham Science Publishers Ltd.

Loading Cadi Ayyad University collaborators
Loading Cadi Ayyad University collaborators