Time filter

Source Type

Middleton, WI, United States

Brumm P.,C5-6 Technologies, Inc. | Land M.L.,Oak Ridge National Laboratory | Hauser L.J.,Oak Ridge National Laboratory | Jeffries C.D.,Los Alamos National Laboratory | And 2 more authors.
Bioenergy Research

Geobacillus thermoglucosidasius Y4.1MC1 was isolated from a boiling spring in the lower geyser basin of Yellowstone National Park. This species is of interest because of its metabolic versatility. The genome consists of one circular chromosome of 3,840,330 bp and a circular plasmid of 71,617 bp with an average GC content of 44.01 %. The genome is available in the GenBank database (NC_014650.1 and NC_014651.1). In addition to the expected metabolic pathways for sugars and amino acids, the Y4.1MC1 genome codes for two separate carbon monoxide utilization pathways, an aerobic oxidation pathway and an anaerobic reductive acetyl CoA (Wood-Ljungdahl) pathway. This is the first report of a non-anaerobic organism with the Wood-Ljungdahl pathway. This anaerobic pathway permits the strain to utilize H2 and fix CO2 present in the hot spring environment. Y4.1MC1 and its related species may play a significant role in carbon capture and sequestration in thermophilic ecosystems and may open up new routes to produce biofuels and chemicals from CO, H2, and CO2. © 2015, The Author(s). Source

Brumm P.,C5-6 Technologies, Inc. | Land M.L.,Oak Ridge National Laboratory | Hauser L.J.,Oak Ridge National Laboratory | Jeffries C.D.,Los Alamos National Laboratory | And 2 more authors.
Standards in Genomic Sciences

Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and aα- and β-galactooligosaccharides. © 2015 Brumm et al. Source

Brumm P.J.,C5-6 Technologies, Inc. | Brumm P.J.,U.S. Department of Energy

Genome sequencing of cellulolytic bacteria combined with analyses using structural and sequence similarity software reveals potential cellulolytic enzymes not previously recovered by routine purification or shotgun cloning techniques. Comparison of the presence and absence of potential cellulases across the prokaryotes indicate that there are at least four distinct mechanisms of cellulose degradation; two distinct soluble systems and two separate cell-based systems can be postulated. None of the mechanisms appear completely homologous to the Trichoderma system of cellulose degradation. Minimum sets of bacterial cellulases can be predicted for the soluble sets based on comparison across genomes, leading to testable hypotheses on cellulose degradation. © 2013 Future Science Ltd. Source

Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 227.83K | Year: 2011

DESCRIPTION (provided by applicant): Improved therapy has transformed cystic fibrosis (CF) from a disease characterized by death in early childhood to a chronic illness with a median survival of approximately 30 years. However, there is still no cure for this devastating genetic disease affecting approximately 30,000 Americans and many questions about molecular pathogenesis, with important implications for therapy, remain to be answered. Approximately 80% of cystic fibrosis patients develop Pseudomonas aeruginosa infections of the lungs, which are a major cause of morbidity and mortality in this genetic disease. These chronic infections are resistant to antibiotic therapies. Recent studies suggest that the antibiotic resistance of P. aeruginosa in the CF lung is due to the formation of biofilms that are impervious to antibiotics. The P. aeruginosa biofilm is composed of bacterial cells surrounded by a three dimensional matrix of diverse substances, including polysaccharides, proteins, nucleic acids, and lipids; the major structural component appears to be polysaccharides produced by the P. aeruginosa cells. The proposed work will systematically test the ability of 80 polysaccharide-degrading enzymes to breakdown or weaken the P. aeruginosa biofilm. A sensitivetest to determine the amount of polysaccharide degradation has been developed and those enzymes that actively degrade the biofilm will be combined to make a synergistic enzyme cocktail. The optimal enzyme mixture will then be tested in combination with Tobramycin to test the hypothesis that enzymatic degradation of the P. aeruginosa polysaccharide biofilm components will increase the sensitivity of P. aeruginosa to antibiotic treatment, resulting in improved outcomes for patients. PUBLIC HEALTH RELEVANCE: There is an unmet need for new therapies to extend the life and health of cystic fibrosis patients, a fatal disease affecting tens of thousands of Americans. Pseudomonas aeruginosa is the pathogen responsible for most CF patients succumbing to thisgenetic disease. The proposed development of enzymes that attack and degrade the antibiotic resistant biofilm formed by Pseudomonas aeruginosa has the potential to extend the quality and quantity of life, with important implications for numerous other diseases that are impacted by the formation of biofilms.

C5-6 Technologies, Inc. | Date: 2013-11-11

Enzymes for inhibiting growth of biofilms and degrading biofilms. The enzymes comprise glycosyl hydrolases capable of degrading biofilms. The enzymes are formulated in compositions with and without antimicrobial agents. The enzymes with and without the antimicrobial agents are delivered to biofilms to degrade the biofilms and treat infections of microorganisms associated with the biofilms, delivered to surfaces to inhibit growth of biofilms thereon, and administered to animals to inhibit growth of biofilms therein.

Discover hidden collaborations