Entity

Time filter

Source Type

Inglewood, CA, United States

Streptococcus mutans has been implicated as the major acid-producing (cariogenic) bacterium. Dietary sugars and other factors may cause an imbalance of oral microflora that enables S. mutans to become dominant in the multi-species biofilms on the tooth surface, which could lead to dental caries. The application of broad-spectrum antimicrobials often results in re-colonization and re-dominance of S. mutans within oral flora, while in contrast, therapies capable of selective elimination of S. mutans from oral microbial communities may help to re-establish the normal flora and provide long-term protection. C16G2, a novel synthetic antimicrobial peptide with specificity for S. mutans, was found to have robust killing efficacy and selectivity for S. mutans in vitro. A subsequent pilot human study found that a single application of C16G2 in the oral cavity (formulated in a mouthrinse vehicle) was associated with a reduction in plaque and salivary S. mutans, lactic acid production, and enamel demineralization during the entire 4-day testing period. C16G2 is now being developed as a new anticaries drug.


Since the discovery of magainins, cecropins and defensins 30 years ago, antimicrobial peptides (AMPs) have been hailed as a potential solution to the dearth of novel antibiotic development. AMPs have shown robust activity against a wide variety of pathogens, including drug-resistant bacteria. Unlike small-molecule antibiotics, however, AMPs have failed to translate this success to the clinic. Only the polymyxins, gramicidins, nisin and daptomycin are currently approved for medical use; the latter is the only example to have been developed in the last several decades. Nonetheless, researchers continue to isolate, modify and develop novel AMPs for therapeutic applications. Efforts have focused on increasing stability, reducing cytotoxicity, improving antimicrobial activity and incorporating AMPs in novel formulations, including nanoscale particles. As peptide synthesis and recombinant production methodologies improve, and more relevant bioassays become available, it becomes increasingly likely that AMPs will break the regulatory barrier and enter the marketplace as valuable antimicrobial weapons in the next 10 years. © 2011 Future Medicine Ltd.


Patent
C3 Jian Inc. | Date: 2010-01-06

This invention provides novel antimicrobial peptides and formulations thereof. The peptides and/or formulations are effective to kill or to inhibit the growth and/or proliferation of various bacteria, yeast, and fungi.


Patent
C3 Jian Inc. | Date: 2012-10-16

This invention provides novel antimicrobial peptides and formulations thereof. The peptides and/or formulations are effective to kill or to inhibit the growth and/or proliferation of various bacteria, yeast, and fungi.


In various embodiments compositions are provided for the whitening, and/or brightening, and/or restoration of a tooth. In various embodiments the compositions, referred to herein as dental care compositions typically comprise a binding moiety that binds to calcium and/or to tooth enamel and/or to pellicle attached to an active agent. The active agent is selected to deliver a particular activity (e.g., whitening, remineralization, desensitization, brightening, etc.) to the tooth.

Discover hidden collaborations