Entity

Time filter

Source Type


Renuga Devi T.S.,P.A. College | Sharmi Kumar J.,P.A. College | Sharmi Kumar J.,Periyar University | Ramkumaar G.R.,C Kandaswami Naidu College For Men In Anna Nagar East
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy | Year: 2014

The FTIR and FT-Raman spectra of 2-amino-2-methyl-1,3-propanediol were recorded in the regions 4000-400 cm-1 and 4000-50 cm-1 respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and density functional method (B3LYP) with the augmented-correlation consistent-polarized valence double zeta (aug-cc-pVDZ) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed on the basis of the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Mulliken charges were calculated using both Hartee-Fock and density functional method using the aug-cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-Independent Atomic Orbital (GIAO) method and were compared with experimental results. © 2014 Elsevier B.V. All rights reserved. Source


Suhasini M.,Pachaiyappas College | Sailatha E.,Pachaiyappas College | Gunasekaran S.,St Peters University | Ramkumaar G.R.,C Kandaswami Naidu College For Men In Anna Nagar East
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy | Year: 2015

A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine. © 2015 Elsevier B.V. All rights reserved. Source


Swarnalatha N.,University | Gunasekaran S.,St Peters University | Nagarajan M.,Arulmigu Palani Andavar College Of Arts | Srinivasan S.,Presidency College at Chennai | And 2 more authors.
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy | Year: 2015

In this work, we have investigated experimentally and theoretically on the molecular structure, vibrational spectra, UV spectral analysis and NBO studies of cardio-protective drug carvedilol. The FT-Raman and FT-IR spectra for carvedilol in the solid phase have been recorded in the region 4000-100 cm-1 and 4000-400 cm-1 respectively. Theoretical calculations were performed by using density functional theory (DFT) method at B3LYP/6-31G(d,p) and B3LYP/6-31++G(d,p) basis set levels. The harmonic vibrational frequencies, the optimized geometric parameters have been interpreted and compared with the reported experimental values. The complete vibrational assignments were performed on the basis of potential energy distribution (PED) of the vibrational modes. The thermodynamic properties and molecular electrostatic potential surfaces of the molecule were constructed. The electronic absorption spectrum was recorded in the region 400-200 nm and electronic properties such as HOMO and LUMO energies were calculated. The stability of the molecule arising from hyper conjugative interactions and charge delocalization have been analyzed from natural bond orbital (NBO) analysis. The first order hyperpolarizability of the title molecule was also calculated. The photo stability of carvedilol under different storage conditions were analyzed using UV-Vis spectral technique. © 2014 Elsevier B.V. All rights reserved. Source


Suhasini M.,Pachaiyappas College | Sailatha E.,Pachaiyappas College | Gunasekaran S.,St Peters University | Ramkumaar G.R.,C Kandaswami Naidu College For Men In Anna Nagar East
Journal of Molecular Structure | Year: 2015

Abstract The Fourier transform infrared (FT-IR) and FT-Raman spectra of Lornoxicam were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p) and 6-31++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the Vibrational modes calculated using Vibrational Energy Distribution Analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and Lornoxicam is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis and the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like Entropy, Enthalpy, Specific heat capacity and zero vibrational energy have been calculated. Besides, molecular electrostatic potential (MEP) was investigated using theoretical calculations. © 2015 Elsevier B.V. Source


Moorthi P.P.,Pachaiyappas College | Moorthi P.P.,C Kandaswami Naidu College For Men In Anna Nagar East | Gunasekaran S.,St Peters University | Swaminathan S.,Anna University | Ramkumaar G.R.,C Kandaswami Naidu College For Men In Anna Nagar East
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy | Year: 2014

A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule. © 2014 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations