Time filter

Source Type

Natick, MA, United States

Busek Company Inc. | Date: 2012-08-15

A charge injected fluid assist liquid atomizer including a liquid delivery channel, a flow focusing member for generating a coaxial air stream to draw a slender jet from the liquid in the delivery channel toward an opposing orifice, an electrode in the channel submerged in the liquid, and a power source for applying a voltage between the electrode and channel to inject a charge into the liquid entrained in the focused flow of the jet and through the opposing orifice.

A spacecraft system and method includes a platform with a dock and an umbilical payout device. A robot is connected to an umbilical paid out by the umbilical payout device and is repeatedly deployable from the dock. The robot includes one or more imagers, an inertial measurement unit, and a plurality of thrusters. A command module receives image data from the one or more robot imagers and orientation data from the inertial measurement unit. An object recognition module is configured to recognize one or more objects from the received image data. The command module determines the robots orientation with respect to an object and issues thruster control commands to control movement of the robot based on the robots orientation. The combination of the space platform and robot on umbilical line can be used for towing another object to different orbital location, inspection including self-inspection of the robot carrying platform and for robotic servicing.

Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 749.98K | Year: 2016

Busek Co. Inc. proposes to advance the maturity of an innovative Spacecraft on Umbilical Line (SOUL) System suitable for a wide variety of applications of interest to NASA, DoD and commercial missions. SOUL is a small (

Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 749.90K | Year: 2016

Busek is developing an advanced iodine feed system for Hall Effect Thrusters (HETs), ion engines, cathodes, and other plasma generators. The feed system features an innovative piezo driven valve that saves volume, mass, cost, and energy with respect to state of the art alternatives. The feed system also features a low mass plastic propellant tank that may be manufactured through additive processes. This allows low cost, complex shapes that can maximize the use of available space inside volume-restricted spacecraft. The feed system will be especially attractive for small spacecraft and CubeSats. Iodine stores as a solid and sublimates at modest temperatures as the molecule I2, which allows many benefits with respect to traditional Hall effect thruster fuels such as xenon and krypton. These advantages include higher storage density, lower storage pressure, the ability to test high power systems at space-relevant conditions in modest facilities, the capability to store propellant in space without active regulation, and the capacity to transfer propellant at low-pressure conditions in space. In a space-limited spacecraft, using iodine instead of state of the art xenon could increase available delta-V by a factor of three (3) or more. In Phase I, Busek developed a feed system featuring the advanced components, which was integrated into the iSAT spacecraft form factor. The system was then tested with an iodine compatible Hall effect thruster in relevant space conditions. In Phase II, an improved feed system will be designed, built and tested. Major Phase II technical objectives include developing an engineering model iodine resistant, piezo driven flow control valve, finalizing the feed system control architecture, identifying and evaluate commercial components to fill out the system, and building and characterizing the system. At the conclusion of the Phase II effort, engineering model valves will be delivered to NASA for further characterization.

Busek Company Inc. | Date: 2012-07-27

An iodine fueled plasma generator system includes a plasma generator. At least one storage vessel is configured to store condensed phase iodine therein. A heating device proximate to the storage vessel is configured to create iodine vapor from the condensed phase iodine. A propellant management subsystem is configured to deliver the iodine vapor to the plasma generator. A feedback control subsystem is responsive to one or more of plasma generator discharge current, the pressure of the iodine vapor, and/or the temperature of the iodine vapor configured to regulate the flow rate of the iodine vapor to the plasma generator.

Discover hidden collaborations