Entity

Time filter

Source Type

Jericho, VT, United States

Walker D.M.,Experimental Pathology Laboratories Inc. | Walker D.M.,Burlington HC Research Group | Patrick O'Neill J.,University of Vermont | Tyson F.L.,Esri | And 3 more authors.
Environmental and Molecular Mutagenesis | Year: 2013

The events or factors that lead from normal cell function to conditions and diseases such as aging or cancer reflect complex interactions between cells and their environment. Cellular stress responses, a group of processes involved in homeostasis and adaptation to environmental change, contribute to cell survival under stress and can be resolved with damage avoidance or damage tolerance outcomes. To investigate the impact of environmental agents/conditions upon cellular stress response outcomes in epithelium, a novel quantitative assay, the "stress response resolution" (SRR) assay, was developed. The SRR assay consists of pretreatment with a test agent or vehicle followed later by a calibrated stress conditions exposure step (here, using 6-thioguanine). Pilot studies conducted with a spontaneously-immortalized murine mammary epithelial cell line pretreated with vehicle or 20 μg N-ethyl-N-nitrososurea/ml medium for 1 hr, or two hTERT-immortalized human bronchial epithelial cell lines pretreated with vehicle or 100 μM zidovudine/lamivudine for 12 days, found minimal alterations in cell morphology, survival, or cell function through 2 weeks post-exposure. However, when these pretreatments were followed 2 weeks later by exposure to calibrated stress conditions of limited duration (for 4 days), significant alterations in stress resolution were observed in pretreated cells compared with vehicle-treated control cells, with decreased damage avoidance survival outcomes in all cell lines and increased damage tolerance outcomes in two of three cell lines. These pilot study results suggest that sub-cytotoxic pretreatments with chemical mutagens have long-term adverse impact upon the ability of cells to resolve subsequent exposure to environmental stressors. © 2013 Wiley Periodicals, Inc. Source


Walker D.M.,Burlington HC Research Group | Nicklas J.A.,University of Vermont | Walker V.E.,Burlington HC Research Group | Walker V.E.,University of Vermont | Walker V.E.,New York State Department of Health
Environmental and Molecular Mutagenesis | Year: 2013

Cellular stress responses consist of a complex network of pathways and linked processes that, when perturbed, are postulated to have roles in the pathogenesis of various human diseases. To assess the impact of environmental insults upon this network, we developed a novel stress response resolution (SRR) assay for investigation of cellular stress resolution outcomes and the effects of environmental agents and conditions thereupon. SRR assay-based criteria identified three distinct groups of surviving cell clones, including those resembling parental cells, those showing Hprt/HPRT mutations, and a third type, "Phenotype-altered" clones, that occurred predominantly in cells pretreated with a chemical mutagen, was heterogeneous in nature, and expressed significant alterations in cell morphology and/or function compared with parental cells. Further evaluation of Phenotype-altered clones found evidence of various alterations that resembled epithelial-to-mesenchymal transition, phenotype switching, checkpoint dysfunction, senescence barrier bypass, and/or epigenetic reprogramming. Phenotype-altered clones were found to occur spontaneously in a cell line with a mutator phenotype, to represent the major surviving clone type in a variation of the SRR assay, and to be tumorigenic in nude mice. Assessment of SRR assay final results showed that pretreatment with a chemical mutagen induced significant changes in cellular stress response prosurvival capacity, in damage avoidance versus damage tolerance stress resolution outcomes, and in the damage burden in the final surviving cell populations. Taken together, these results support the conclusion that use of the SRR assay can provide novel insights into the role of environmental insults in the pathogenesis of cancer and other human diseases. © 2013 Wiley Periodicals, Inc. Source

Discover hidden collaborations