Entity

Time filter

Source Type

Neuilly - sur - Seine, France

Bureau Veritas S.A. is a global company in testing, inspection and certification services. Bureau Veritas offer services and solutions to ensure that their clients' assets, products, infrastructure and processes meet standards and regulations in terms of quality, health and safety, environmental protection and social responsibility. At the end of 2013, the group has more than 61,600 employees in more than 1,330 offices and laboratories located in 140 countries.Originally formed in Antwerp in 1828 as Bureau de Renseignements pour les Assurances Maritimes , the Bureau Veritas name was adopted in 1829.)The company has its headquarters in Neuilly-sur-Seine, near Paris La Défense in France. Wikipedia.


Grant
Agency: Cordis | Branch: FP7 | Program: CSA-SA | Phase: SST.2013.6-1. | Award Amount: 2.05M | Year: 2013

Maritime Europe Strategy Action (MESA FOSTER WATERBORNE), main strategic objective (in line with WATERBORNE-TP) is to strengthen the effectiveness of the research and innovation capacities of the European maritime industry, by: - Optimization of the European maritime RDI strategies - Improvement of the stakeholders network, of the dissemination, of the use of the research results, and increasing the visibility of the R&I findings - Fostering the definition of the maritime R&I transport policies MESA, is (1) providing support to the WATERBORNE TP work, enlarging and maintaining it, (2) identifying 4 major themes (implemented via Thematic Technology Groups on Energy Efficiency, Safety, Production, E-Maritime) performing an in-depth analysis and assessment of the achievements at EU and National level, to foster future strategic lines in research and innovation, (3) updating the strategic research agenda and creating an innovation agenda contributing to close the gaps between research and market uptake, (4) enhancing a network for the exchange of ideas and priorities, (5) acting as major player for dissemination raising waterborne value chain profile and visibility in Europe. Foresight activity will provide market, societal and regulatory trends studies, contributing to transport RDI policies. A Integration Group will issue Strategic documents for the waterborne sector: VISIONS2030, Strategic Research Agenda, Innovation Agenda, Implementation Plan, homogenizing findings of the Thematic Technology Groups and the Foresight. A comprehensive communication strategy will be implemented including coverage of the TRA2014, 2016, Technology Workshops, Major Conferences, Newsletter, Brokerage Events, Show Cases of successful projects, TRIP liaison, etc. MESA involves 28 partners, (industrial, research, education, associations) ensuring the widest possible participation accustomed to work together since many years, in the majority of EU projects and in the WATERBORNE-TP.


The overall objective of TRUST-EPC-SOUTH is to scale up investments on Energy Efficiency (EE) and other Sustainable Energy (SE) in the tertiary sector of southern European countries, with particular focus on Energy Performance Contracts (EPC) projects. This objective will be achieved through the development of an ad hoc investment standardization and benchmarking framework and supported with the organisation of tailored capacity building activities that will allow project developers (including ESCOs , ESPCs and other EPC providers), project sponsors and tertiary sector actors to more easily access third party financing, thus unlocking the large tertiary sector EE/SE market potential. Geographically, the project will be carried out in the following 6 countries: Portugal, Spain, France, Italy, Croatia and Greece, in which we both see a need to improve the situation and a large untapped market potential in the tertiary sector.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: OCEAN.2011-1 | Award Amount: 6.73M | Year: 2012

The key objective of the TROPOS project is the development of a floating modular multi-use platform system for use in deep waters, with an initial geographic focus on the Mediterranean, Tropical and Sub-Tropical regions but designed to be flexible enough not to be limited in geographic scope. The TROPOS approach is centered on the modular development where different types of modules can be combined as appropriate in each area. In this way, the TROPOS multi-use platform system is able to integrate a range of functions from the transport, energy, aquaculture and leisure sectors, in a greater number of geographical areas than if it was a set platform design. This subsequently provides greater opportunities for profitability. The TROPOS design will focus on a floating multi-purpose structure able to operate in, and exploit, deep waters, where fixed structures such as those piled in the seabed are not feasible. The multi-use platforms developed from the concept designs will have the potential to provide European coastal regions with appropriate aquaculture systems, innovative transport services as well as leisure and offshore energy solutions. The main S/T objectives of the project are: To determine, based on both numerical and physical modeling, the optimal locations for multi-use offshore platforms in Mediterranean, sub-tropical and tropical latitudes To research the relations between oceanic activities, including wind energy, aquaculture, transport solutions for shipping, and other additional services To develop novel, cost-efficient and modular multi-use platform designs, that enable optimal coupling of the various services and activities To study the logistical requirements of the novel multi-use platform To assess the economic feasibility and viability of the platform To develop a comprehensive environmental impact methodology and assessment To configure at least three complete solutions, for the Mediterranean, Sub-tropical and tropical areas


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: MG-6.2-2014 | Award Amount: 7.55M | Year: 2015

SYNCHRO-NET will demonstrate how a powerful and innovative SYNCHRO-modal supply chain eco-NET can catalyse the uptake of the slow steaming concept and synchro-modality, guaranteeing cost-effective robust solutions that de-stress the supply chain to reduce emissions and costs for logistics operations while simultaneously increasing reliability and service levels for logistics users. The core of the SYNCHRO-NET solution will be an integrated optimisation and simulation eco-net, incorporating: real-time synchro-modal logistics optimisation (e-Freight-enabled); slow steaming ship simulation & control systems; synchro-modal risk/benefit analysis statistical modelling; dynamic stakeholder impact assessment solution; and a synchro-operability communications and governance architecture. Perhaps the most important output of SYNCHRO-NET will be the demonstration that slow steaming, coupled with synchro-modal logistics optimisation delivers amazing benefits to all stakeholders in the supply chain: massive reduction in emissions for shipping and land-based transport due to modal shift to greener modes AND optimised planning processes leading to reduced empty kms for trucks and fewer wasted repositioning movements. This will lead to lower costs for ALL stakeholders shipping companies and logistics operators will benefit from massive reduction in fuel usage, faster turnaround times in ports & terminals and increased resource utilisation/efficiency. Customers and end users will have greater control of their supply chain, leading to more reliable replenishment activity and therefore reduced safety stocks and expensive warehousing. Authorities and governmental organisations will benefit from a smoother, more controlled flow of goods through busy terminals, and reduction of congestion on major roads, thus maximising the utilisation of current infrastructure and making the resourcing of vital activities such as import/export control, policing and border security less costly.


TRUST aims at conducting CO2 injection experiments at scales large enough so that the output can be extrapolated at industrial scales. It relies on four sites: the heavily instrumented sites of Heletz (Israel, main site) and Hontomin (Spain), access Miranga (Brazil) and the emerging site in the Baltic Sea region. The objectives are to: carry out CO2 injection with different strategies, displaying characteristics representative of the large scale storage and with injection volumes that will produce extrapolable reservoir responses; Develop, use and implement characterization and MMV technologies for maximized safety and minimized risks, including real time visualization of the CO2 containment and detection of possible failures; Develop optimal injection strategies that maintain realistic figures of injectivity, and capacity while simultaneously optimizing the use of energy; Detect and mitigate CO2 leakage at an abandoned well; Produce comprehensive datasets for model verification and validation; Improve the predictive capacity and performance of computational models, as well as their capability to handle uncertainty and thermo-hydro-mechanical and chemical phenomena at different scales (at the scale of the experiments) and upscaling (extrapolation to industrial scale) simulations; Address critical non-scientific issues of public acceptance, community participation, communication, dissemination, liabilities and prepare templates for the preparation and application of injection licenses and communication with regulators; Establish on-site facilities for analysis of monitoring and measurement, providing training and capacity building; Address the risk assessment in a meaningful way; Prepare a platform for the exploitation of project findings and for knowledge and information sharing with planned, large scale, CCS projects. Allow open access to sites, and seek cooperation with large scale CO2 injection projects both at the European and International levels.

Discover hidden collaborations