Time filter

Source Type

Tampa, FL, United States

Vander Kelen P.T.,University of South Florida | Downs J.A.,University of South Florida | Stark L.M.,Bureau of Laboratories Tampa | Loraamm R.W.,University of South Florida | And 2 more authors.
International Journal of Health Geographics | Year: 2012

Background: Eastern Equine Encephalitis virus (EEEV) is an alphavirus with high pathogenicity in both humans and horses. Florida continues to have the highest occurrence of human cases in the USA, with four fatalities recorded in 2010. Unlike other states, Florida supports year-round EEEV transmission. This research uses GIS to examine spatial patterns of documented horse cases during 2005-2010 in order to understand the relationships between habitat and transmission intensity of EEEV in Florida.Methods: Cumulative incidence rates of EEE in horses were calculated for each county. Two cluster analyses were performed using density-based spatial clustering of applications with noise (DBSCAN). The first analysis was based on regional clustering while the second focused on local clustering. Ecological associations of EEEV were examined using compositional analysis and Euclidean distance analysis to determine if the proportion or proximity of certain habitats played a role in transmission.Results: The DBSCAN algorithm identified five distinct regional spatial clusters that contained 360 of the 438 horse cases. The local clustering resulted in 18 separate clusters containing 105 of the 438 cases. Both the compositional analysis and Euclidean distance analysis indicated that the top five habitats positively associated with horse cases were rural residential areas, crop and pastureland, upland hardwood forests, vegetated non-forested wetlands, and tree plantations.Conclusions: This study demonstrates that in Florida tree plantations are a focus for epizootic transmission of EEEV. It appears both the abundance and proximity of tree plantations are factors associated with increased risk of EEE in horses and therefore humans. This association helps to explain why there is are spatially distinct differences in the amount of EEE horse cases across Florida. © 2012 Vander Kelen et al.; licensee BioMed Central Ltd.

Estep L.K.,Oregon State University | McClure C.J.W.,Auburn University | Vander Kelen P.,University of South Florida | Burkett-Cadena N.D.,University of South Florida | And 10 more authors.
PLoS ONE | Year: 2013

For a variety of infectious diseases, the richness of the community of potential host species has emerged as an important factor in pathogen transmission, whereby a higher richness of host species is associated with a lowered disease risk. The proposed mechanism driving this pattern is an increased likelihood in species-rich communities that infectious individuals will encounter dead-end hosts. Mosquito-borne pathogen systems potentially are exceptions to such "dilution effects" because mosquitoes vary their rates of use of vertebrate host species as bloodmeal sources relative to host availabilities. Such preferences may violate basic assumptions underlying the hypothesis of a dilution effect in pathogen systems. Here, we describe development of a model to predict exposure risk of sentinel chickens to eastern equine encephalitis virus (EEEV) in Walton County, Florida between 2009 and 2010 using avian species richness as well as densities of individual host species potentially important to EEEV transmission as candidate predictor variables. We found the highest support for the model that included the density of northern cardinals, a highly preferred host of mosquito vectors of EEEV, as a predictor variable. The highest-ranking model also included Culiseta melanura abundance as a predictor variable. These results suggest that mosquito preferences for vertebrate hosts influence pathogen transmission.

Basile A.J.,Centers for Disease Control and Prevention | Biggerstaff B.J.,Centers for Disease Control and Prevention | Kosoy O.L.,Centers for Disease Control and Prevention | Junna S.R.,Poudre High School | And 4 more authors.
Clinical and Vaccine Immunology | Year: 2010

Serum antibodies from myriad species, particularly birds, can provide key information regarding the transmission and the expansion of the territory of emerging pathogens. Expedient antibody analysis is constrained by a lack of species-specific reagents, a deficiency potentially highlighted by the recent swine-origin influenza A virus (H1N1) outbreak. Available methodologies present difficulties that discourage thorough serologic monitoring of potential disease vectors or hosts. Rapid high-throughput procedures that combined serum amine labeling via biotinylation, contaminant removal, and microsphere-based immunoassays for antibodies to three arboviruses were developed. Agent-specific adaptations of this simple format should facilitate expanded surveillance and diagnostic capabilities regarding pathogens of human and veterinary importance. Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Kelen P.T.V.,University of South Florida | Downs J.A.,University of South Florida | Burkett-Cadena N.D.,University of South Florida | Ottendorfer C.L.,University of South Florida | And 11 more authors.
Journal of Medical Entomology | Year: 2012

Eastern Equine Encephalitis virus (EEEV; family Togaviridae, genus Alphavirus) a highly pathogenic mosquito-borne virus is endemic to eastern North America. The ecology of EEEV in Florida differs from that in other parts of the United States; EEEV in the northeastern United States is historically associated with freshwater wetlands. No formal test of habitat associations of EEEV in Florida has been reported. Geographical Information Sciences (GIS) was used in conjunction with sentinel chicken EEEV seroconversion rate data as a means to examine landscape features associated with EEEV transmission in Walton County, FL. Sentinel sites were categorized as enzootic, periodically enzootic, and negative based on the number of chicken seroconversions to EEEV from 2005 to 2009. EEEV transmission was then categorized by land cover usage using Arc GIS 9.3. The land classification data were analyzed using the Kruskal-Wallis test for each land use class to determine which habitats may be associated with virus transmission as measured by sentinel chicken seroconversion rates. The habitat class found to be most significantly associated with EEEV transmission was tree plantations. The ecological factor most commonly associated with reduced levels of EEEV transmission was vegetated nonforest wetlands. Culiseta melanura (Coquillett), the species generally considered to be the major enzootic EEEV vector, was relatively evenly distributed across all habitat classes, while Aedes vexans (Meigen) and Anopheles crucians Weidemann were most commonly associated with tree plantation habitats. © 2012 Entomological Society of America.

Discover hidden collaborations