White Plains, NY, United States
White Plains, NY, United States

Bunge Limited is a global agribusiness and food company headquartered in White Plains, United States. As well as being an international soybean exporter, it is also involved in food processing, grain trading, and fertilizer. It competes with Cargill and Archer Daniels Midland. The company has over 35,000 employees at 400 facilities in 40 countries. Wikipedia.


Time filter

Source Type

Described herein are shortening compositions comprising a high stearic high oleic sunflower oil, a hard fat and optionally a cellulose fiber, wherein the hard fat is other than a palm fat.


Patent
Bunge and University of Campinas | Date: 2016-02-17

Anticorrosive coating compositions comprise a binding polymer and an amorphous aluminum phosphate corrosion inhibiting pigment. The composition comprises from about 1 to 25 percent by weight amorphous aluminum phosphate. The amorphous aluminum phosphate has a water adsorption potential of up to about 25 percent by weight water. The composition provides a controlled phosphate delivery of from about 50 to 500 ppm, and preferably of from about 100 to 200 ppm. The composition has a total solubles content of less than about 1,500 ppm. The amorphous aluminum phosphate is preferably substantially free of alkali metals. The amorphous aluminum phosphate is made by combining aluminum hydroxide with phosphoric acid and sodium aluminate. The amorphous aluminum phosphate is treated to reduce the level of unwanted solubles, and the treated amorphous aluminum phosphate is dried at less than about 300C. The composition is used as a primer coat, a mid-coat, and/or a top-coat coating.


Patent
Bunge | Date: 2016-02-24

Anticorrosive coating compositions comprise a binding polymer and an amorphous aluminum phosphate corrosion inhibiting pigment dispersed therein. The coating composition comprises 1 to 25 percent by weight aluminum phosphate. The binding polymer can include solvent-borne polymers, water-borne polymers, solventless polymers, and combinations thereof. The aluminum phosphate is made by combining an aluminum source with a phosphorous source to form an amorphous aluminum phosphate solid condensate. The coating composition is specially engineered to provide a controlled delivery of phosphate anions of 50 to 500 ppm, and has a total solubles content of less than 1500 ppm. The amorphous aluminum phosphate is preferably free of alkali metals and alkaline earth metals. The amorphous aluminum phosphate has an oil absorption of less than 50, and a surface area of less than about 20 m^(2)/g, The coating composition has a water adsorption potential of up to 25% by weight water.


Patent
Bunge | Date: 2015-05-05

Slurry composition comprising amorphous aluminum phosphate, polyphosphate orthophosphate, metaphosphate and/or combination thereof and a dispersant are described. In certain embodiments, the polyphosphate orthophosphate and/or metaphosphate concentration is about 40 to about 70 weight % and the dispersant concentration is less than about 3.5 weight % based on the total weight of the slurry. In one embodiment, the composition is useful is paints, varnishes, printing inks, papers and plastics. The compositions can be used as a substitute for titanium dioxide in various applications.


Patent
Bunge | Date: 2015-10-13

Antimicrobial chemical compositions comprise an aluminum phosphate (AlP) solid dispersed within a binding polymer, wherein one or more bioactive materials are disposed within AlP forming a bioactive-AlP complex. The complex may comprise the bioactive material chemically bonded with the AlP, physically combined with the AlP, or a combination of both. The complex may be formed according to precipitation, condensation and sol-gel methods of forming. The complex is engineered to provide a controlled delivery of the bioactive material or a constituent thereof upon exposure to moisture to give a desired level of antimicrobial resistance to a film or composite formed from the composition of at least about 30 g/m^(2), and may also provide a desired degree of corrosion resistance through the release of passivating phosphate anion. Such antimicrobial chemical compositions provide an improved degree of active, long-term resistance to a broad range of micro-organisms when compared to known antimicrobial chemical compositions.


An aluminum phosphate or polyphosphate-based pigment product is made by a process comprising contacting phosphoric acid with aluminum sulfate and an alkaline solution to produce an aluminum phosphate based product; and optionally calcining the aluminum phosphate based product at an elevated temperature, wherein the process is substantially free of an organic acid. The aluminum phosphate or polyphosphate-based pigment is amorphous. The amorphous aluminum phosphate or polyphosphate characterized by a bulk density of less than 2.30 grams per cubic centimeter and a phosphorus to aluminum mole ratio of greater than 0.8. The composition is useful in paints and as a substitute for titanium dioxide


A process for preparing a sunflower meal fraction containing at least 50% of proteins and 10% or less of crude fibers. Sunflower meal fraction obtained by the process thereof and its use for preparing animal feed compositions.


An aluminum phosphate composition comprising aluminum phosphate, aluminum polyphosphate, aluminum metaphosphate, or a mixture thereof. The composition may be characterized by, when in powder form, having particles wherein some of the particles have at least one or more voids per particle. In addition, the composition is characterized by exhibiting two endothermic peaks in Differential Scanning calorimetry between about 90 degrees to about 250 degrees Celsius. The composition is also characterized by, when in powder form, having a dispersibility of at least 0.025 grams per 1.0 gram of water. The composition is made by a process comprising contacting phosphoric acid with aluminum sulfate and an alkaline solution to produce an aluminum phosphate based product; and optionally calcining the aluminum phosphate, polyphosphate or metaphosphate based product at an elevated temperature. The composition is useful in paints and as a substitute for titanium dioxide.


Patent
Bunge | Date: 2015-07-14

Antimicrobial chemical compositions comprise an aluminum phosphate (AlP) solid dispersed within a binding polymer, wherein one or more bioactive materials are disposed within AlP forming a bioactive-AlP complex. The complex may comprise the bioactive material chemically bonded with the AlP, physically combined with the AlP, or a combination of both. The complex may be formed according to precipitation, condensation and sol-gel methods of forming. The complex is engineered to provide a controlled delivery of the bioactive material or a constituent thereof upon exposure to moisture to give a desired level of antimicrobial resistance to a film or composite formed from the composition of at least about 30 g/m^(2), and may also provide a desired degree of corrosion resistance through the release of passivating phosphate anion. Such antimicrobial chemical compositions provide an improved degree of active, long-term resistance to a broad range of micro-organisms when compared to known antimicrobial chemical compositions.


Patent
Bunge | Date: 2016-02-17

Anticorrosive coating compositions as disclosed comprise a binding polymer and an aluminum phosphate corrosion inhibiting pigment dispersed therein. The coating composition comprises up to 25 percent by weight aluminum phosphate. The binding polymer can include solvent-borne polymers, water-borne polymers, solventless polymers, and combinations thereof. The aluminum phosphate is made by sol gel process of combining an aluminum salt with phosphoric acid and a base material. Aluminum phosphate colloidal particles are nanometer sized, and aggregate to form substantially spherical particles. The coating composition provides a controlled delivery of phosphate anions of 100 to 1,500 ppm, depending on post-formation treatment of the aluminum phosphate, and has a total solubles content of less than 1500 ppm, The amorphous aluminum phosphate is free of alkali metals and alkaline earth metals, and has a water adsorption potential of up to about 25 percent by weight water when present in a cured film.

Loading Bunge collaborators
Loading Bunge collaborators