Bulgarian Academy of Science

www.bas.bg/
Sofia, Bulgaria

The Bulgarian Academy of science is the National Academy of Bulgaria, established in 1869. The Academy, located in Sofia, is autonomous and has a Society of Academicians, Correspondent Members and Foreign Members. It publishes and circulates different scientific works, encyclopedias, dictionaries and journals, and runs its own publishing house.Stefan Vodenicharov has been president of the BAS since 2012. Its budget in 2009 was 84 million leva, or 42.7 million euro. The Bulgarian Space Agency, part of the BAS, has a budget of 1 million euro. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: INFRADEV-2-2015 | Award Amount: 1.50M | Year: 2016

Euro-BioImaging (EuBI) is the pan-European research infrastructure project for imaging technologies in biological and medical sciences and has been on the ESFRI Roadmap since 2008. In close match with the scope and objectives of the INFRADEV2 call, Preparatory Phase II (PPII) funding will enable EuBI: to finalize the submission and approval procedure of its ERIC statutes with the EC and bring them to signature by the EuBI Member States and EMBL to launch the EuBI-ERIC; obtain commitments for the sustainable funding for the EuBI-ERIC by its Member States; implement the operational EuBI Hub and recruit its staff to provide user access and services; define and sign the service level agreements between EuBI-ERIC and the 1st generation of EuBI Nodes; establish a procedure to increase EuBI-ERIC membership, so that new countries can continuously join the EuBI-ERIC with clear national benefits and contributions. From Dec 2010 until May 2014, EuBI successfully completed its EU FP7-funded Preparatory Phase I, which addressed key technical and strategic questions and provided a blueprint for infrastructure implementation. 14 European countries (BE, BG, CZ, FI, FR, IL, IT, NO, PL, PT, SK, ES, NL, UK), and the PPI coordinator EMBL have signed the EuBI Memorandum of Understanding to jointly undertake the remaining steps required to draft and submit the EuBI ERIC application to the EC. The MoU signatories constitute the EuBI Interim Board (IB), which now governs the Interim Phase. To maintain the successful momentum of Member State engagement, the EuBI PPII project consortium comprises and is fully supported by all IB Members. We have jointly defined clear and measurable objectives that will bring EuBI to full maturity in order to start operation and provide its services to European researchers immediately upon launch of the EuBI-ERIC. The award of PPII funding would leapfrog the start of EuBI-ERIC user access and service provision by at least 1,5 years time or more.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMP-26-2014 | Award Amount: 11.93M | Year: 2015

One of the greatest challenges facing regulators in the ever changing landscape of novel nano-materials is how to design and implement a regulatory process which is robust enough to deal with a rapidly diversifying system of manufactured nanomaterials (MNM) over time. Not only does the complexity of the MNM present a problem for regulators, the validity of data decreases with time, so that the well-known principle of the half-life of facts (Samuel Arbesman, 2012) means that what is an accepted truth now is no longer valid in 20 or 30 years time. The challenge is to build a regulatory system which is flexible enough to be able to deal with new targets and requirements in the future, and this can be helped by the development and introduction of Safe by Design (SbD) principles. The credibility of such a regulatory system, underpinned by the implementation of SbD, is essential for industry, who while accepting the need for regulation demand it is done in a cost effective and rapid manner. The NANoREG II project, built around the challenge of coupling SbD to the regulatory process, will demonstrate and establish new principles and ideas based on data from value chain implementation studies to establish SbD as a fundamental pillar in the validation of a novel MNM. It is widely recognized by industries as well as by regulatory agencies that grouping strategies for NM are urgently needed. ECETOC has formed a task force on NM grouping and also within the OECD WPMN a group works on NM categorisation. However, so far no reliable and regulatory accepted grouping concepts could be established. Grouping concepts that will be developed by NanoREG II can be regarded as a major innovation therefore as guidance documents on NM grouping will not only support industries or regulatory agencies but would also strongly support commercial launch of new NM.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 10.00M | Year: 2016

The SeaDataNet pan-European infrastructure has been developed by NODCs and major research institutes from 34 countries. Over 100 marine data centres are connected and provide discovery and access to data resources for all European researchers. Moreover, SeaDataNet is a key infrastructure driving several portals of the European Marine Observation and Data network (EMODnet), initiated by EU DG-MARE for Marine Knowledge, MSFD, and Blue Growth. SeaDataNet complements the Copernicus Marine Environmental Monitoring Service (CMEMS), coordinated by EU DG-GROW. However, more effective and convenient access is needed to better support European researchers. The standards, tools and services developed must be reviewed and upgraded to keep pace with demand, such as developments of new sensors, and international and IT standards. Also EMODnet and Copernicus pose extra challenges to boost performance and foster INSPIRE compliance. More data from more data providers must be made available, from European and international research projects and observing programmes. SeaDataCloud aims at considerably advancing SeaDataNet services and increasing their usage, adopting cloud and HPC technology for better performance. More users will be engaged and for longer sessions by including advanced services in a Virtual Research Environment. Researchers will be empowered with a collection of services and tools, tailored to their specific needs, supporting marine research and enabling generation of added-value products. Data concern the wide range of in situ observations and remote sensing data. To have access to the latest cloud technology and facilities, SeaDataNet will cooperate with EUDAT, a network of computing infrastructures that develop and operate a common framework for managing scientific data across Europe. SeaDataCloud will improve services to users and data providers, optimise connecting data centres and streams, and interoperate with other European and international networks.


Grant
Agency: European Commission | Branch: H2020 | Program: COFUND-EJP | Phase: EURATOM | Award Amount: 856.96M | Year: 2014

A Roadmap to the realization of fusion energy was adopted by the EFDA system at the end of 2012. The roadmap aims at achieving all the necessary know-how to start the construction of a demonstration power plant (DEMO) by 2030, in order to reach the goal of fusion electricity in the grid by 2050. The roadmap has been articulated in eight different Missions. The present proposal has the goal of implementing the activities described in the Roadmap during Horizon 2020 through a joint programme of the members of the EUROfusion Consortium. ITER is the key facility in the roadmap. Thus, ITER success remains the most important overarching objective of the programme and, in the present proposal the vast majority of resources in Horizon 2020 are devoted to ensure that ITER is built within scope, time and budget; its operation is properly prepared; and a new generation of scientists and engineers is properly educated (at undergraduate and PhD level) and trained (at postdoctoral level) for its exploitation. DEMO is the only step between ITER and a commercial fusion power plant. To achieve the goal of fusion electricity demonstration by 2050, DEMO construction has to begin in the early 2030s at the latest, to allow the start of operation in the early 2040s. DEMO cannot be defined and designed by research laboratories alone, but requires the full involvement of industry in all technological and systems aspects of the design. Specific provisions for the involvement of industry in the Consortium activities are envisaged.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EINFRA-2-2014 | Award Amount: 13.13M | Year: 2015

OpenAIRE2020 represents a pivotal phase in the long-term effort to implement and strengthen the impact of the Open Access (OA) policies of the European Commission (EC), building on the achievements of the OpenAIRE projects. OpenAIRE2020 will expand and leverage its focus from (1) the agents and resources of scholarly communication to workflows and processes, (2) from publications to data, software, and other research outputs, and the links between them, and (3) strengthen the relationship of European OA infrastructures with other regions of the world, in particular Latin America and the U.S. Through these efforts OpenAIRE2020 will truly support and accelerate Open Science and Scholarship, of which Open Access is of fundamental importance. OpenAIRE2020 continues and extends OpenAIREs scholarly communication infrastructure to manage and monitor the outcomes of EC-funded research. It combines its substantial networking capacities and technical capabilities to deliver a robust infrastructure offering support for the Open Access policies in Horizon 2020, via a range of pan-European outreach activities and a suite of services for key stakeholders. It provides researcher support and services for the Open Data Pilot and investigates its legal ramifications. The project offers to national funders the ability to implement OpenAIRE services to monitor research output, whilst new impact measures for research are investigated. OpenAIRE2020 engages with innovative publishing and data initiatives via studies and pilots. By liaising with global infrastructures, it ensures international interoperability of repositories and their valuable OA contents. To ensure sustainability and long-term health for the overall OpenAIRE infrastructure, the proposed OpenAIRE2020 project will establish itself as a legal entity, which will manage the production-level responsibilities securing 24/7 reliability and continuity to all relevant user groups, data providers and other stakeholders.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 13.00M | Year: 2015

Particle physics is at the forefront of the ERA, attracting a global community of more than 10,000 scientists. With the upgrade of the LHC and the preparation of new experiments, the community will have to overcome unprecedented challenges in order to answer fundamental questions concerning the Higgs boson, neutrinos, and physics beyond the Standard Model. Major developments in detector technology are required to ensure the success of these endeavours. The AIDA-2020 project brings together the leading European infrastructures in detector development and a number of academic institutes, thus assembling the necessary expertise for the ambitious programme of work. In total, 19 countries and CERN are involved in this programme, which follows closely the priorities of the European Strategy for Particle Physics. AIDA-2020 aims to advance detector technologies beyond current limits by offering well-equipped test beam and irradiation facilities for testing detector systems under its Transnational Access programme. Common software tools, micro-electronics and data acquisition systems are also provided. This shared high-quality infrastructure will ensure optimal use and coherent development, thus increasing knowledge exchange between European groups and maximising scientific progress. The project also exploits the innovation potential of detector research by engaging with European industry for large-scale production of detector systems and by developing applications outside of particle physics, e.g. for medical imaging. AIDA-2020 will lead to enhanced coordination within the European detector community, leveraging EU and national resources. The project will explore novel detector technologies and will provide the ERA with world-class infrastructure for detector development, benefiting thousands of researchers participating in future particle physics projects, and contributing to maintaining Europes leadership of the field.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 10.13M | Year: 2015

ACTRIS-2 addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases capitalizing work of FP7-ACTRIS. ACTRIS-2 aims to achieve the construction of a user-oriented RI, unique in the EU-RI landscape. ACTRIS-2 provides 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column), relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit harmonization of collected data and their dissemination. ACTRIS-2 offers networking expertise, upgraded calibration services, training of users, trans-national access to observatories and calibration facilities, virtual access to high-quality data products. Through joint research activities, ACTRIS-2 develops new integration tools that will produce scientific or technical progresses reusable in infrastructures, thus shaping future observation strategies. Innovation in instrumentation is one of the fundamental building blocks of ACTRIS-2. Associated partnership with SMEs stimulates development of joint-ventures addressing new technologies for use in atmospheric observations. Target user-groups in ACTRIS-2 comprise a wide range of communities worldwide. End-users are institutions involved in climate and air quality research, space agencies, industries, air quality agencies. ACTRIS-2 will improve systematic and timely collection, processing and distribution of data and results for use in modelling, in particular towards implementation of atmospheric and climate services. ACTRIS-2 invests substantial efforts to ensure long-term sustainability beyond the term of the project by positioning the project in both the GEO and the on-going ESFRI contexts, and by developing synergies with national initiatives.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 1.94M | Year: 2017

Graphene 3D project proposes highly innovative pathway for the development of optimized, multifunctional graphene-based polymer composites and structures with desired properties for specific applications, based on combination of three main approaches: (i) controlled processing and materials characterization; (ii) robust nanocomposite design; and (iii) modeling/optimization of nanocomposite cellular structures with predefined properties. Graphene 3D methodology will result in two major outcomes: Multifunctional nanocomposite material for 3D printing application, as well as Optimized and experimentally validated, 3D printed nanocomposite cellular structures with tunable electromagnetic, thermal and mechanical properties. To reach the goal, the proposal will pursue the following main objectives: (1) to develop an effective processing technique for graphene-based polymer nanocomposite; (2) to correlate processing variables with final micro and nanostructure features; (3) to obtain highly improved nanocomposite properties (electrical, electromagnetic, mechanical, thermal); (4) to propose robust design tool for optimizing process-structure-property-performance parameters, resulting in optimized nanocomposite formulation for 3D printing application; (5) to design nanocomposite-based cellular structures with optimum configuration (structure, geometry) and tunable multifunctional characteristics in view of predefined performances; (6) to prove the design concept by fabrication and experimental validation of both nanocomposite material and 3D printed cellular structures that achieve unique properties. Project research & innovation ideas will bring up the research results from TRL 1-2 to TRL 3-4, with potential for application specified towards high power electronics. Graphene 3D will create a Joint Laboratory on graphene-polymer research for knowledge share in a multidisciplinary international/inter-sectoral consortium having long-term implication.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2015 | Award Amount: 2.18M | Year: 2016

EXANDAS project aims to apply emerging and cutting edge technologies in the field of Natural Product Chemistry in order to fully and efficiently exploit the therapeutic potential of medicinal and aromatic processing waste and by-products. New opportunities for the generation of innovative products with high added value in the field of cosmeceuticals and food supplements are expected to be generated while current environmental challenges will be addressed. The cornerstone of EXANDAS project is the development of novel processes based on eco-friendly technologies for the efficient extraction, purification and transformation of active ingredients, as well as the complete chemical characterization and biological evaluation of produced extracts and pure compounds that can be commercially exploited. Optimization and scaling up of these procedures, as well as formulation using emerging technologies will lead to the development of novel final products. A diverse group of experts, leaders in their scientific and technological fields, comprising six academic groups and six SMEs partners from four EU Member States and three Third Countries will join forces and exchange know-how through an extended secondments scheme to advance Research & Innovation. Using the experience of the academic partners in phytochemistry and natural product chemistry, as well as the practical experience of the SMEs in large scale processing of plant material and development of innovative final products, transfer of scientific knowledge, best practices and know-how, training courses and workshops will take place. Overall, the implementation of the EXANDAS project aspires to develop a successful and sustainable international and intersectoral collaboration model, that will contribute to the innovation potential of Europe for the most effective exploitation of natural resources and the development of novel cosmeceuticals and food supplements.

Loading Bulgarian Academy of Science collaborators
Loading Bulgarian Academy of Science collaborators