Entity

Time filter

Source Type


Kim H.-S.,Building and Urban Research Institute | Kim B.,Seoul National University of Science and Technology | Kim K.-S.,Korea Institute of Geoscience and Mineral Resources | Kim J.-M.,Kongju National University
Journal of Material Cycles and Waste Management | Year: 2016

This study was conducted with the aim to chemically remove the cement paste attached to the aggregate surface using acidic substances. Sulfuric and hydrochloric acids were used as the acidic substances, and after analyzing the quality characteristics of the aggregates following the acid treatment, a mortar test was performed using the aggregates. The results showed that the acid-treated recycled aggregates were superior to the original aggregates and the recycled aggregates that were manufactured using natural water in terms of density, absorption ratio and solid volume percentage. Based on this, it was determined that acid treatment was effective in improving the quality of recycled fine aggregates. In addition, the results of reviewing the strength characteristics of the mortar obtained using the acid-treated aggregates showed that the residue substances remaining in the recycled fine aggregates after reacting with the cement paste had a negative impact on the concrete strength. Based on this, it was determined that in case of improving the quality of recycled aggregates by acid treatment, there needs to be strict management of the products of the reaction with the acid in order for the aggregates to be used in structural construction. © 2016 Springer Japan Source


Kim T.H.,Building and Urban Research Institute
Sustainability (Switzerland) | Year: 2016

Studies which reduce cement usage, develop an alternative by partial replacement of cement with blast-furnace slag, fly ash, or such industrial byproducts, and evaluate the environmental load and economic value of concrete mixed with such are in high demand. In this study, A-BFS (Activator Blast Furnace Slag), which is mixed with an activator in order to induce early-age strength manifestation of BFS mixed concrete was used to execute a physical property evaluation of concrete. This study first conducted physical property tests for compression strength of concrete that partially replaced OPC (ordinary Portland cement) with A-BFS and executed a comparison/analysis with 100% OPC. It was thought that if concrete early strength is manifested through this process when applied to RC (Reinforced Concrete) building, at most a three to four day construction cycle would be possible, according to which the economic value of the construction period reduction was evaluated. For this evaluation, general apartment houses (Case 1) were taken as the evaluation subject, and for comparison, Cases 2, 3, and 4 were set up by the mix ratio of A-BFS, and the economic value evaluation range was established. As a result, it was found that Case 2 had no change from Case 1, while Case 3 saved about 106,654,762 KRW (Korea Won) and Case 4 saved about 159,982,143 KRW. © 2016 by the authors. Source


Kim T.H.,Building and Urban Research Institute | Chae C.U.,Building and Urban Research Institute
Sustainability (Switzerland) | Year: 2016

Concrete is a major material used in the construction industry that emits a large amount of substances with environmental impacts during its life cycle. Accordingly, technologies for the reduction in and assessment of the environmental impact of concrete from the perspective of a life cycle assessment (LCA) must be developed. At present, the studies on LCA in relation to greenhouse gas emission from concrete are being carried out globally as a countermeasure against climate change. However, the studies on the impact of the substances emitted in the concrete production process on acidification and eutrophication are insufficient. As such, assessing only a single category of environmental impact may cause a misunderstanding about the environmental friendliness of concrete. The substances emitted in the concrete production process have an impact not only on global warming but also on acidification and eutrophication. Acidification and eutrophication are the main causes of air pollution, forest destruction, red tide phenomena, and deterioration of reinforced concrete structures. For this reason, the main substances among those emitted in the concrete production process that have an impact on acidification and eutrophication were deduced. In addition, an LCA technique through which to determine the major emissions from concrete was proposed and a case analysis was carried out. The substances among those emitted in the concrete production process that are related to eutrophication were deduced to be NOx, NH3, NH4 +, COD, NO3 -, and PO4 3-. The substances among those emitted in the concrete production process that are related to acidification, were found to be NOx, SO2, H2S, and H2SO4. The materials and energy sources among those input into the concrete production process, which have the biggest impact on acidification and eutrophication, were found to be coarse aggregate and fine aggregate. © 2016 by the authors. Source


Cho S.-H.,Building and Urban Research Institute | Chae C.-U.,Building and Urban Research Institute
Sustainability (Switzerland) | Year: 2016

There have been much interest and many efforts to control global warming and reduce greenhouse gas (GHG) emissions throughout the world. Recently, the Republic of Korea has also increased its GHG reduction goal and searched for an implementation plan. In buildings, for example, there have been technology developments and deployment policies to reduce GHG emissions from a life cycle perspective, covering construction materials, building construction, use of buildings and waste disposal. In particular, Korea's Green Standard for Energy and Environmental Design is a certification of environmentally-friendly buildings for their energy saving and reduction of environmental pollution throughout their lives. In fact, the demand and adoption of the certification are rising every year. In construction materials and buildings, as a result, an environmentally-friendly aspect has become crucial. The importance of construction material and building development technologies that can reduce environmental load by diminishing GHG emissions in buildings has emerged. Moreover, there has been a rising necessity to verify the GHG reduction effects of buildings. To assess the reduction of carbon emissions in the buildings built with low-carbon construction technologies and materials, therefore, this study estimated life cycle carbon emissions in reference buildings in which general construction materials are used and in low-carbon buildings. For this, the carbon emissions and their reduction from construction materials (especially concrete) between conventional products and low-carbon materials were estimated, using Life Cycle Assessment (LCA). After estimating carbon emissions from a building life cycle perspective, their reduction in low-carbon buildings compared to the reference buildings was reviewed. The results found that compared to conventional buildings, low-carbon buildings revealed a 25% decrease in carbon emissions in terms of the reduction of Life Cycle CO2 (LCCO2) per unit area. If diverse production technologies and sales routes are further developed for low-carbon construction materials, carbon emission reduction effects would considerably increase. © 2016 by the authors. Source


Kim T.,Building and Urban Research Institute | Tae S.,Hanyang University | Chae C.U.,Building and Urban Research Institute
Sustainability (Switzerland) | Year: 2016

Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA) to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP). The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa) of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa), high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have the greatest impact on GWP, POCP, and ADP, while aggregate had the most impact on AP, EP, and ODP. © 2016 by the authors. Source

Discover hidden collaborations