Time filter

Source Type

Hamadan, Iran

Buali Sina University, also written Bu-Ali Sina University, is a university in the city of Hamedan in Hamedan province of Iran. The university was first established with the assistance of France in February 1973. It is one of the best universities of Iran. For example, Buali Sina University is in the same class as of Isfahan University of Technology, Tabriz University, and Ferdowsi University of Mashhad. Its most popular, prominent and high quality programs are in the fields of Chemistry, Civil Engineering, Mechanical Engineering, and Agricultural Engineering. Wikipedia.

We study infinitesimal axisymmetric deformations of a functionally graded shell with piezoelectric layers perfectly bonded to its inner and outer surfaces, and the hybrid structure subjected to thermo-electro-mechanical loads. The material properties of the shell are assumed to be graded in the radial direction according to a power law but Poisson's ratio is assumed to be constant. For simply-supported and grounded edges kept at a constant temperature, the problem is analyzed analytically by assuming a Navier type solution for the governing equations and the state space method for solving the resulting ordinary differential equations. Numerical results are given to illuminate influences of the mechanical and the electrical boundary conditions, the exponent of the power law variation, and the radius to thickness ratio. © 2010 Elsevier Ltd. Source

Rezaeivala M.,Hamedan University of Technology | Keypour H.,Bu - Ali Sina University
Coordination Chemistry Reviews

In this paper, there is an attempt to review the developments in the design and synthesis of pyridine containing [1+1] and [2+2] macrocyclic Schiff base ligands, formed by condensations of 2,6-diacylpyridine or 2,6-diformylpyridine and appropriate polyamines, which utilize the templating capability of different metal ions to direct the synthetic pathway. The reduction of the cyclic Schiff bases to their related amine derivatives is also considered since this leads to more flexible ligands capable of structural elaboration through donor groups. Attention is mainly paid to the synthetic and structural aspects of the resulting metal complexes, particularly to the role of the coordination preferences of the different metal ions in directing the synthesis totally or preferentially toward mono-, di- or poly-nuclear entities. The preparation of functionalized ligands, containing pendant arms, capable of promoting rapid complexation and decomplexation and their use in selective metal ion transportation and separation are also paid attention to. Furthermore, a summary of the new approach of these compounds such as mechanically interlocked molecules, catalytic properties and cofactors and artificial metalloenzymes is reviewed. © 2014 Elsevier B.V. Source

Farahani M.,Bu - Ali Sina University
Engineering Applications of Artificial Intelligence

In order to enhance transient stability in a power system, a new intelligent controller is proposed to control a Static VAR compensator (SVC) located at center of the transmission line. This controller is an online trained wavelet neural network controller (OTWNNC) with adaptive learning rates derived by the Lyapunov stability. During the online control process, the identification of system is not necessary, because of learning ability of the proposed controller. One of the proposed controller features is robustness to different operating conditions and disturbances. The test power system is a two-area two-machine system power. The simulation results show that the oscillations are satisfactorily damped out by the OTWNNC. © 2012 Elsevier Ltd. All rights reserved. Source

This paper presents analytical solution for functionally graded material (FGM) beams integrated with piezoelectric actuator and sensor under an applied electric field and thermo-mechanical load. In FGM host properties is assumed to vary exponentially in thickness direction and the Poisson's ratio is held constant. The hybrid beam is in a state of plane stress and the piezoelectric is composed of orthotropic materials. The beam is simply supported with the bottom surface traction free and zero temperature. By using of state-space method in thickness direction and Fourier series in longitudinal direction, the solution can be made. To verify the accuracy of the present formulation, numerical results for the simple case is compared with results obtained in the published literature. Finally, effects of FGM index, electromechanical coupling, thickness ratio and thermo-mechanical surface boundary condition on the bending behaviour of beam are investigated. © 2009 Elsevier Ltd. All rights reserved. Source

In this work, zinc oxide (ZnO) precursor was prepared by precipitation method from zinc nitrate and ammonium carbonate in aqueous solutions. ZnO nanoparticles were synthesized by annealing the precursor at different temperatures. The effect of the annealing temperature on the particle size and photo-luminescence (PL) properties of the synthesized ZnO nanoparticles were studied by XRD, SEM, BET, TG-DTA and PL measurements. The XRD results indicated that the synthesized ZnO nanoparticles had the pure wurtzite structure. It is found that with increasing the annealing temperature the crystalinity and particle size increases as well as the lattice parameters approaches to those of the XRD standard. The studies of the aggregation of the samples were also carried out by comparing SEM micrographs with specific surface measurements and XRD results. Finally, the room temperature PL spectra show UV emission peak in the range of 378.50-379.80 nm, which is close to the bulk ZnO. © 2012 Elsevier Ltd. Source

Discover hidden collaborations