Entity

Time filter

Source Type

BTG
London, United Kingdom

BTG plc, a public limited company is an international specialty pharmaceuticals company that is developing and commercialising products targeting critical care, cancer, neurological and other disorders. The company is also seeking to acquire new products to develop and market to hospital specialists, and is building a sustainable business financed by revenues from sales of its critical care products and from royalties and milestone payments on partnered products. Wikipedia.


Venderbosch R.H.,BTG
ChemSusChem | Year: 2015

The rapid heating of biomass in an oxygen-free environment optimizes the yield of fast-pyrolysis liquids. This liquid comprises a mix of acids, (dehydrated) carbohydrates, aldehydes, ketones, lignin fragments, aromatics, and alcohols, limiting its use. Deoxygenation of these liquids to replace hydrocarbons represents significant challenges. Catalytic pyrolysis is seen as a promising route to yield liquids with a higher quality. In this paper, literature data on catalytic fast pyrolysis of biomass are reviewed and deoxygenation results correlated with the overall carbon yield. Evidence is given that in an initial stage of the catalytic process reactive components are converted to coke, gas, and water, and only to a limited extent to a liquid product. Catalysts are not yet good enough, and an appropriate combination of pyrolysis conditions, reactive products formed, and different reactions to take place to yield improved quality liquids may be practically impossible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source


Patent
Btg | Date: 2015-01-26

A method is described for providing acute symptomatic relief to a subject with Parkinsons Disease (PD) or other CNS disorders resulting from dopamine deficiency in the brain comprising administering to said subject an amount of a ketogenic material sufficient to produce a ketosis in the subject sufficient to provide therapeutic benefit in such neurological disorders. Preferred materials produce a ketosis is such that the total concentration of acetoacetate and (R)-3-hydroxybutyrate in the blood of the subject is raised to between 0.1 and 30 mM.


A salt of a compound of formula (I) may be made with methanesulfonic acid. The salt and salts with other acids may be prepared by recovering from methyl tert-butyl ether (MTBE).


A method is provided for treating a patient suffering from apoptosis of tissue comprising administering to that subject a therapeutically effective amount of one or more ketogenic compounds such that a physiological ketosis is produced sufficient to arrest said apoptosis. Preferably the apoptosis is of cerebral tissue such as that associated with acute intractible seizures, particularly with status epilepticus. The method is also applicable to apoptosis associated with administration of toxic stuimuli for treatment of cancer, that produced by viral infections, autoimmune diseases or Aquired Immuno Difficiency Syndrome. The ketosis produced is a state in which levels of one or both of acetoacetate and (R)-3-hydroxybutyrate concentrations in the blood of the subject such that their total concentration in the blood is elevated above the normal fed levels to between 0.1 and 30 mM. Also provided is the use of ketogeic material to in the manufacture of a medicament for the treatment of apoptosis and pharmaceutical compositions for such treatment.


Patent
Btg | Date: 2015-04-24

A method is provided for treating a subject in need of therapy for attention deficit hyperactivity disorder (ADHD) and related CNS disorder symptoms of impaired learning, impaired planning, impaired problem solving, impulsiveness, attention deficit and aggression comprising administering to said subject an amount of a ketogenic material sufficient to produce a ketosis in the subject sufficient to provide therapeutic benefit in such behavioural disorders. Preferred materials produce a ketosis is such that the total concentration of acetoacetate and (R)-3-hydroxybutyrate in the blood of the subject is raised to between 0.1 and 30 mM.

Discover hidden collaborations