Rapid City, SD, United States
Rapid City, SD, United States

Time filter

Source Type

News Article | April 26, 2017
Site: www.prnewswire.com

Die Bewerber diese Jahr kämpfen um die begehrte Auszeichnung in einer von fünf Kategorien: Best Process Innovation, Best Shared Services Team, Excellence in Culture Creation, Excellence in Transformation und - die 2017 erstmals aufgeführte Kategorie - Excellence in Automation (unterstützt von Automation Anywhere). In diesen stark umkämpften Kategorien haben es Unternehmen wie Coca-Cola Hellenic, Tarmac, Sonae, Heathrow BSC und Shell in zwei Kategorien in die Shortlist geschafft. Zu weiteren nominierten Unternehmen gehören UPM, Siemens, Hexaware, Account NI, Vodafone, Maersk, Western Union, Société Générale, Wüstenrot & Württembergische, National Grid, Ericsson, WNS, Mas Legato, 3M und Lufthansa. Account NI, das Sieger-Unternehmen aus dem Vorjahr, wurde in der Kategorie Excellence in Transformation erneut in die Shortlist aufgenommen und hätte somit die Möglichkeit, den Award zum zweiten Mal in Folge zu gewinnen. Das Unternehmen muss sich mit Auftritten von Coca-Cola Hellenic, Hexaware, Shell and Sonae messen. Die Verleihung 2017 wird von Experten aus dem Bereich Shared Services beurteilt: Irina Chernousenko, Paul Bryanhill, Chris Gunning, George Connell, Ian Herbert, Mike Stops und Paul Theaker. Die Excellence Awards Ceremony wird anlässlich der alljährlichen Shared Services and Outsourcing Week - diese geht in die 17. Runde - abgehalten und zwar vom 15.-18. Mai 2017 - die Gewinner werden zu diesem Zeitpunkt bekanntgegeben. SSOW ist der erste europäische Shared Services-Event mit 580+ führenden Unternehmen aus den Bereichen Shared Services, GBS, Outsourcing and Transformation.


News Article | April 26, 2017
Site: www.prnewswire.com

The applicants this year are competing to win a coveted award in one of the 5 categories; Best Process Innovation, Best Shared Services Team, Excellence in Culture Creation, Excellence in Transformation, and the new for 2017 category, Excellence in Automation, sponsored by Automation Anywhere.  Across these highly competitive categories, Coca-Cola Hellenic, Tarmac, Sonae, Heathrow BSC and Shell have all made the shortlist in 2 categories, whilst other nominees include; UPM, Siemens, Hexaware, Account NI, Vodafone, Maersk, Western Union, Société Générale, Wüstenrot & Württembergische, National Grid, Ericsson, WNS, Mas Legato, 3M and Lufthansa. After winning in 2016, Account NI have found themselves on the shortlist for the Excellence in Transformation category once again, and could to win the award for a second year in a row. They are up against entries from Coca-Cola Hellenic, Hexaware, Shell and Sonae. The 2017 Awards are judged by experts in the Shared Services industry; Irina Chernousenko, Paul Bryanhill, Chris Gunning, George Connell, Ian Herbert, Mike Stops and Paul Theaker. The Excellence Awards Ceremony is hosted during the 17th Annual Shared Services & Outsourcing Week taking place on the 15th - 18th May 2017 where the winners will be announced. SSOW is the premier European Shared Services Event which hosts 580+ Shared Services, GBS, Outsourcing and Transformation leaders. For more information go to http://awards.ssoweek.com


News Article | April 26, 2017
Site: www.prnewswire.co.uk

The applicants this year are competing to win a coveted award in one of the 5 categories; Best Process Innovation, Best Shared Services Team, Excellence in Culture Creation, Excellence in Transformation, and the new for 2017 category, Excellence in Automation, sponsored by Automation Anywhere.  Across these highly competitive categories, Coca-Cola Hellenic, Tarmac, Sonae, Heathrow BSC and Shell have all made the shortlist in 2 categories, whilst other nominees include; UPM, Siemens, Hexaware, Account NI, Vodafone, Maersk, Western Union, Société Générale, Wüstenrot & Württembergische, National Grid, Ericsson, WNS, Mas Legato, 3M and Lufthansa. After winning in 2016, Account NI have found themselves on the shortlist for the Excellence in Transformation category once again, and could to win the award for a second year in a row. They are up against entries from Coca-Cola Hellenic, Hexaware, Shell and Sonae. The 2017 Awards are judged by experts in the Shared Services industry; Irina Chernousenko, Paul Bryanhill, Chris Gunning, George Connell, Ian Herbert, Mike Stops and Paul Theaker. The Excellence Awards Ceremony is hosted during the 17th Annual Shared Services & Outsourcing Week taking place on the 15th - 18th May 2017 where the winners will be announced. SSOW is the premier European Shared Services Event which hosts 580+ Shared Services, GBS, Outsourcing and Transformation leaders. For more information go to http://awards.ssoweek.com


NEWTOWN, Pa., May 01, 2017 (GLOBE NEWSWIRE) -- Onconova Therapeutics, Inc. (NASDAQ:ONTX), a Phase 3 stage biopharmaceutical company focused on discovering and developing novel products to treat cancer, with a primary focus on myelodysplastic syndromes, today announced one oral and one poster presentation at the 14th International Symposium on Myelodysplastic Syndromes taking place May 3-6, 2017 at the Palacios de Congresos de Valencia in Valencia, Spain.  These presentations will be made by the Company’s collaborators from the Mount Sinai School of Medicine and the Cleveland Clinic. Poster Presentation:    Date: May 4th through May 6th   Time: 8:00 am Location: Poster Presentation Section Presenter: Dr. Aziz Nazha - Cleveland Clinic, Cleveland, Ohio A Validation of a Post-Hypomethylating Agent Failure (HMAF) Prognostic Model in Myelodysplastic Syndromes (MDS) Patients Treated with Rigosertib versus Best Supportive Care (BSC) in a Randomized Controlled Phase III trial Combination of Oral Rigosertib and Injectable Azacitidine In Patients with Myelodysplastic Syndromes (MDS) Additional details and content from these presentations will be available on the Company’s website on the day of the presentations. About Onconova Therapeutics, Inc. Onconova Therapeutics, Inc. is a Phase 3 stage biopharmaceutical company focused on discovering and developing novel small molecule drug candidates to treat cancer, with a primary focus on Myelodysplastic Syndromes (MDS). Rigosertib, Onconova’s lead candidate, is a proprietary Phase 3 small molecule agent, which blocks cellular signaling by targeting RAS effector pathways.  Using a proprietary chemistry platform, Onconova has created a pipeline of targeted anti-cancer agents designed to work against specific cellular pathways that are important in cancer cells, while causing minimal damage to normal cells. Onconova has three product candidates in clinical trials and several active pre-clinical programs. Advanced clinical trials with Onconova’s lead compound, rigosertib, are aimed at unmet medical needs of patients with MDS. For more information, please visit http://www.onconova.com.


NEWTOWN, Pa., May 01, 2017 (GLOBE NEWSWIRE) -- Onconova Therapeutics, Inc. (NASDAQ:ONTX), a Phase 3 stage biopharmaceutical company focused on discovering and developing novel products to treat cancer, with a primary focus on myelodysplastic syndromes, today announced one oral and one poster presentation at the 14th International Symposium on Myelodysplastic Syndromes taking place May 3-6, 2017 at the Palacios de Congresos de Valencia in Valencia, Spain.  These presentations will be made by the Company’s collaborators from the Mount Sinai School of Medicine and the Cleveland Clinic. Poster Presentation:    Date: May 4th through May 6th   Time: 8:00 am Location: Poster Presentation Section Presenter: Dr. Aziz Nazha - Cleveland Clinic, Cleveland, Ohio A Validation of a Post-Hypomethylating Agent Failure (HMAF) Prognostic Model in Myelodysplastic Syndromes (MDS) Patients Treated with Rigosertib versus Best Supportive Care (BSC) in a Randomized Controlled Phase III trial Combination of Oral Rigosertib and Injectable Azacitidine In Patients with Myelodysplastic Syndromes (MDS) Additional details and content from these presentations will be available on the Company’s website on the day of the presentations. About Onconova Therapeutics, Inc. Onconova Therapeutics, Inc. is a Phase 3 stage biopharmaceutical company focused on discovering and developing novel small molecule drug candidates to treat cancer, with a primary focus on Myelodysplastic Syndromes (MDS). Rigosertib, Onconova’s lead candidate, is a proprietary Phase 3 small molecule agent, which blocks cellular signaling by targeting RAS effector pathways.  Using a proprietary chemistry platform, Onconova has created a pipeline of targeted anti-cancer agents designed to work against specific cellular pathways that are important in cancer cells, while causing minimal damage to normal cells. Onconova has three product candidates in clinical trials and several active pre-clinical programs. Advanced clinical trials with Onconova’s lead compound, rigosertib, are aimed at unmet medical needs of patients with MDS. For more information, please visit http://www.onconova.com.


NEWTOWN, Pa., May 01, 2017 (GLOBE NEWSWIRE) -- Onconova Therapeutics, Inc. (NASDAQ:ONTX), a Phase 3 stage biopharmaceutical company focused on discovering and developing novel products to treat cancer, with a primary focus on myelodysplastic syndromes, today announced one oral and one poster presentation at the 14th International Symposium on Myelodysplastic Syndromes taking place May 3-6, 2017 at the Palacios de Congresos de Valencia in Valencia, Spain.  These presentations will be made by the Company’s collaborators from the Mount Sinai School of Medicine and the Cleveland Clinic. Poster Presentation:    Date: May 4th through May 6th   Time: 8:00 am Location: Poster Presentation Section Presenter: Dr. Aziz Nazha - Cleveland Clinic, Cleveland, Ohio A Validation of a Post-Hypomethylating Agent Failure (HMAF) Prognostic Model in Myelodysplastic Syndromes (MDS) Patients Treated with Rigosertib versus Best Supportive Care (BSC) in a Randomized Controlled Phase III trial Combination of Oral Rigosertib and Injectable Azacitidine In Patients with Myelodysplastic Syndromes (MDS) Additional details and content from these presentations will be available on the Company’s website on the day of the presentations. About Onconova Therapeutics, Inc. Onconova Therapeutics, Inc. is a Phase 3 stage biopharmaceutical company focused on discovering and developing novel small molecule drug candidates to treat cancer, with a primary focus on Myelodysplastic Syndromes (MDS). Rigosertib, Onconova’s lead candidate, is a proprietary Phase 3 small molecule agent, which blocks cellular signaling by targeting RAS effector pathways.  Using a proprietary chemistry platform, Onconova has created a pipeline of targeted anti-cancer agents designed to work against specific cellular pathways that are important in cancer cells, while causing minimal damage to normal cells. Onconova has three product candidates in clinical trials and several active pre-clinical programs. Advanced clinical trials with Onconova’s lead compound, rigosertib, are aimed at unmet medical needs of patients with MDS. For more information, please visit http://www.onconova.com.


News Article | May 1, 2017
Site: www.biosciencetechnology.com

Digital imaging is another area where HPC-enabled speedups are advancing clinical care. Panelist Simon K. Warfield described innovative imaging techniques his team is applying to increase understanding of the brain’s complex circuitry. Dr. Warfield is the Thorne Griscom Professor of Radiology at Harvard Medical School and the founder and director of the Computational Radiology Lab (CRL) at Boston Children's Hospital. CRL is an Intel Parallel Computing Center that is modernizing the algorithms and data structures of medical image computing on Intel Xeon and Intel Xeon Phi processors. The lab is improving cache performance, vectorization performance and multi-threading performance, as well as creating more sophisticated imaging and modeling strategies. CRL can contribute to improved diagnosis and treatment of brain injuries, multiple sclerosis, depression, Alzheimer’s and many other conditions. Consider the novel technique CRL has developed to show more clearly water’s diffusion through the brain—and pinpoint hindrances and restrictions to its flow. In contrast to traditional image processing approaches, CRL’s diffusion-weighted imaging infers new parametric maps from data measurements. Its computational model includes tens or hundreds of 3D images—each up to 10 million pixels each—as its inputs. “This type of analysis is very computationally intensive,” Warfield said. “With the accelerated algorithm and the Intel Xeon Phi processors, we reduced the time needed from 48 hours to 15 minutes of calculations.” That speedup can translate to immediate benefits in for critically ill patients facing brain surgery. That’s because, as Warfield put it, “When you’re talking about surgical planning, life is a matter of time.” Recently, one of the hospital’s neurosurgery teams realized on a Friday that their patient’s conventional magnetic resonance scan was not clear enough to allow them to proceed with a planned brain resection. With the surgery-planning meeting scheduled for Monday, they requested emergency use of CRL’s diffusion imaging algorithm. The patient had a new scan Saturday evening, the data was processed on Sunday, and the information was ready for the team’s decision on Monday. The panel also highlighted precision medicine’s global reach—and its big data challenges. Fang Lin, Director of the Bioinformatics Center at BGI, described BGI’s use of the Lustre file system to help maintain storage performance as its data volumes grow. BGI is a global research leader as well as a provider of genetic testing products. It also operates the China National Genebank, putting it on the forefront of China’s five-year. BGI cranks 20 terabytes of sequencing data every day. The institute stores13petabytes of genomic data and uses a 10 petabyte file system comprising Intel Enterprise Edition for Lustre Software and open source technologies. Dr. David Torrents, a molecular biologist and research professor at the Barcelona Supercomputing Center, shone a spotlight on the importance of collaboration in advancing precision medicine. BSC provides resources to a variety of international centers and consortia. In addition, the institute conducts its own multidisciplinary research in computational biomedicine and related fields. BSC’s alliances also encompass a range of hospitals and medical centers, enabling it to validate and test its models and tools with data from clinical institutions. “We’re at an exciting moment,” Torrents said. “We are not just developing new solutions for personalized medicine, but now are beginning a pilot program in January 2017 to bring them together and apply them in clinical settings, beginning in Catalonia and then throughout Spain.” The panelists say continued leaps forward in precision medicine will come from faster and more sophisticated analysis of larger volumes of more varied data types. “What we want is a more holistic picture, and for that, it’s becoming absolutely critical to combine many diverse data types together for analysis,” said Lowey. To achieve that holistic picture, researchers want to use deep learning and other forms of artificial intelligence. They also want to apply those AI methods to genomic data in combination with imaging data, lifelong clinical records, population studies, environmental studies, and much more. Different aspects of the precision medicine workflow will have varying processing and storage requirements. So the push continues for faster performance with agile or heterogeneous platform architectures rather than a single “silver bullet” approach. The processors will continue as the primary workhorses, supplemented by embedded resources and FPGA accelerators for parts of the workflow. Distributed compute and storage resources will remain crucial, along with advances in applications and tools. As to the clinical impact of these holistic approaches, look no further than Boston Children’s Hospital. Noninvasive prenatal genomic testing can indicate whether a fetus has the risk factors that predispose it to be born with a malformed heart. If genetic testing shows these factors are present, data-intensive digital imaging can reveal whether the heart is actually deformed. By combining genomic with other medical data in this way, clinicians can provide peace of mind for worried parents-to-be, or help them plan for their child’s future. “We’re starting to connect the genetics that predisposes an individual to heart disease, with the imaging to see if the defect is present, and use that information to influence current treatment,” said Warfield. “That information can also help us plan for the child’s longer-term future. We can predict how they’ll do as teenagers and begin to plan accordingly.” Precision medicine is one of the most promising and meaningful applications of high-performance computing today. “It’s still early days, but we’re moving toward an exciting new era of predictive biology and personalized medicine,” said McManus. “Our panelists gave us a great taste of what’s on the horizon. With continued advances in platform technologies, artificial intelligence, and other areas, we create significant opportunities to increase the science of medicine and ultimately improve human health. Intel is excited to empower scientists and clinicians with technology innovations, resources and expertise as we collaborate to make this new era a reality.” Jan Rowell writes about technology trends in HPC, healthcare, life sciences, and other industries.


News Article | May 8, 2017
Site: www.scientificcomputing.com

Product developers talk about time to market. Web service providers measure time to first byte. For James Lowey, the key metric is time to life. Lowey is CIO at the Translational Genomics Research Institute (TGen), a nonprofit focused on turning genomics insights into faster diagnostics and treatments that are more effective. TGen’s genetics research is being applied to rare childhood diseases, cancer, neurological disorders, diabetes and others. “We’ve got patients waiting,” Lowey told the panel audience. “We need to diagnose and treat them. They need results now, not in weeks or months. We’re working to accelerate the movement of insights from the bench to the bedside.” It’s no surprise that each new generation of processors helps organizations like TGen deliver genetic results—and clinical answers—more quickly. Lowey described TGen’s farm of Intel Xeon processor E5 v3 based Dell blade servers based on Intel Scalable System Framework (Intel SSF). Using the blade servers, TGen has reduced processing time for critical genomics processing tasks from two weeks to seven hours, making it fast enough to be clinically relevant. Digital imaging is another area where HPC-enabled speedups are advancing clinical care. Panelist Simon K. Warfield described innovative imaging techniques his team is applying to increase understanding of the brain’s complex circuitry. Dr. Warfield is the Thorne Griscom Professor of Radiology at Harvard Medical School and the founder and director of the Computational Radiology Lab (CRL) at Boston Children's Hospital. CRL is an Intel Parallel Computing Center that is modernizing the algorithms and data structures of medical image computing on Intel Xeon and Intel Xeon Phi processors. The lab is improving cache performance, vectorization performance and multi-threading performance, as well as creating more sophisticated imaging and modeling strategies. CRL can contribute to improved diagnosis and treatment of brain injuries, multiple sclerosis, depression, Alzheimer’s and many other conditions. Consider the novel technique CRL has developed to show more clearly water’s diffusion through the brain—and pinpoint hindrances and restrictions to its flow. In contrast to traditional image processing approaches, CRL’s diffusion-weighted imaging infers new parametric maps from data measurements. Its computational model includes tens or hundreds of 3D images—each up to 10 million pixels each—as its inputs. “This type of analysis is very computationally intensive,” Warfield said. “With the accelerated algorithm and the Intel Xeon Phi processors, we reduced the time needed from 48 hours to 15 minutes of calculations.” That speedup can translate to immediate benefits in for critically ill patients facing brain surgery. That’s because, as Warfield put it, “When you’re talking about surgical planning, life is a matter of time.” Recently, one of the hospital’s neurosurgery teams realized on a Friday that their patient’s conventional magnetic resonance scan was not clear enough to allow them to proceed with a planned brain resection. With the surgery-planning meeting scheduled for Monday, they requested emergency use of CRL’s diffusion imaging algorithm. The patient had a new scan Saturday evening, the data was processed on Sunday, and the information was ready for the team’s decision on Monday. The panel also highlighted precision medicine’s global reach—and its big data challenges. Fang Lin, Director of the Bioinformatics Center at BGI, described BGI’s use of the Lustre file system to help maintain storage performance as its data volumes grow. BGI is a global research leader as well as a provider of genetic testing products. It also operates the China National Genebank, putting it on the forefront of China’s five-year. BGI cranks 20 terabytes of sequencing data every day. The institute stores13petabytes of genomic data and uses a 10 petabyte file system comprising Intel Enterprise Edition for Lustre Software and open source technologies. Dr. David Torrents, a molecular biologist and research professor at the Barcelona Supercomputing Center, shone a spotlight on the importance of collaboration in advancing precision medicine. BSC provides resources to a variety of international centers and consortia. In addition, the institute conducts its own multidisciplinary research in computational biomedicine and related fields. BSC’s alliances also encompass a range of hospitals and medical centers, enabling it to validate and test its models and tools with data from clinical institutions. “We’re at an exciting moment,” Torrents said. “We are not just developing new solutions for personalized medicine, but now are beginning a pilot program in January 2017 to bring them together and apply them in clinical settings, beginning in Catalonia and then throughout Spain.” The panelists say continued leaps forward in precision medicine will come from faster and more sophisticated analysis of larger volumes of more varied data types. “What we want is a more holistic picture, and for that, it’s becoming absolutely critical to combine many diverse data types together for analysis,” said Lowey. To achieve that holistic picture, researchers want to use deep learning and other forms of artificial intelligence. They also want to apply those AI methods to genomic data in combination with imaging data, lifelong clinical records, population studies, environmental studies, and much more. Different aspects of the precision medicine workflow will have varying processing and storage requirements. So the push continues for faster performance with agile or heterogeneous platform architectures rather than a single “silver bullet” approach. The processors will continue as the primary workhorses, supplemented by embedded resources and FPGA accelerators for parts of the workflow. Distributed compute and storage resources will remain crucial, along with advances in applications and tools. As to the clinical impact of these holistic approaches, look no further than Boston Children’s Hospital. Noninvasive prenatal genomic testing can indicate whether a fetus has the risk factors that predispose it to be born with a malformed heart. If genetic testing shows these factors are present, data-intensive digital imaging can reveal whether the heart is actually deformed. By combining genomic with other medical data in this way, clinicians can provide peace of mind for worried parents-to-be, or help them plan for their child’s future. “We’re starting to connect the genetics that predisposes an individual to heart disease, with the imaging to see if the defect is present, and use that information to influence current treatment,” said Warfield. “That information can also help us plan for the child’s longer-term future. We can predict how they’ll do as teenagers and begin to plan accordingly.” Precision medicine is one of the most promising and meaningful applications of high-performance computing today. “It’s still early days, but we’re moving toward an exciting new era of predictive biology and personalized medicine,” said McManus. “Our panelists gave us a great taste of what’s on the horizon. With continued advances in platform technologies, artificial intelligence, and other areas, we create significant opportunities to increase the science of medicine and ultimately improve human health. Intel is excited to empower scientists and clinicians with technology innovations, resources and expertise as we collaborate to make this new era a reality.” Jan Rowell writes about technology trends in HPC, healthcare, life sciences, and other industries.


News Article | May 8, 2017
Site: www.scientificcomputing.com

Product developers talk about time to market. Web service providers measure time to first byte. For James Lowey, the key metric is time to life. Lowey is CIO at the Translational Genomics Research Institute (TGen), a nonprofit focused on turning genomics insights into faster diagnostics and treatments that are more effective. TGen’s genetics research is being applied to rare childhood diseases, cancer, neurological disorders, diabetes and others. “We’ve got patients waiting,” Lowey told the panel audience. “We need to diagnose and treat them. They need results now, not in weeks or months. We’re working to accelerate the movement of insights from the bench to the bedside.” It’s no surprise that each new generation of processors helps organizations like TGen deliver genetic results—and clinical answers—more quickly. Lowey described TGen’s farm of Intel Xeon processor E5 v3 based Dell blade servers based on Intel Scalable System Framework (Intel SSF). Using the blade servers, TGen has reduced processing time for critical genomics processing tasks from two weeks to seven hours, making it fast enough to be clinically relevant. Digital imaging is another area where HPC-enabled speedups are advancing clinical care. Panelist Simon K. Warfield described innovative imaging techniques his team is applying to increase understanding of the brain’s complex circuitry. Dr. Warfield is the Thorne Griscom Professor of Radiology at Harvard Medical School and the founder and director of the Computational Radiology Lab (CRL) at Boston Children's Hospital. CRL is an Intel Parallel Computing Center that is modernizing the algorithms and data structures of medical image computing on Intel Xeon and Intel Xeon Phi processors. The lab is improving cache performance, vectorization performance and multi-threading performance, as well as creating more sophisticated imaging and modeling strategies. CRL can contribute to improved diagnosis and treatment of brain injuries, multiple sclerosis, depression, Alzheimer’s and many other conditions. Consider the novel technique CRL has developed to show more clearly water’s diffusion through the brain—and pinpoint hindrances and restrictions to its flow. In contrast to traditional image processing approaches, CRL’s diffusion-weighted imaging infers new parametric maps from data measurements. Its computational model includes tens or hundreds of 3D images—each up to 10 million pixels each—as its inputs. “This type of analysis is very computationally intensive,” Warfield said. “With the accelerated algorithm and the Intel Xeon Phi processors, we reduced the time needed from 48 hours to 15 minutes of calculations.” That speedup can translate to immediate benefits in for critically ill patients facing brain surgery. That’s because, as Warfield put it, “When you’re talking about surgical planning, life is a matter of time.” Recently, one of the hospital’s neurosurgery teams realized on a Friday that their patient’s conventional magnetic resonance scan was not clear enough to allow them to proceed with a planned brain resection. With the surgery-planning meeting scheduled for Monday, they requested emergency use of CRL’s diffusion imaging algorithm. The patient had a new scan Saturday evening, the data was processed on Sunday, and the information was ready for the team’s decision on Monday. The panel also highlighted precision medicine’s global reach—and its big data challenges. Fang Lin, Director of the Bioinformatics Center at BGI, described BGI’s use of the Lustre file system to help maintain storage performance as its data volumes grow. BGI is a global research leader as well as a provider of genetic testing products. It also operates the China National Genebank, putting it on the forefront of China’s five-year. BGI cranks 20 terabytes of sequencing data every day. The institute stores13petabytes of genomic data and uses a 10 petabyte file system comprising Intel Enterprise Edition for Lustre Software and open source technologies. Dr. David Torrents, a molecular biologist and research professor at the Barcelona Supercomputing Center, shone a spotlight on the importance of collaboration in advancing precision medicine. BSC provides resources to a variety of international centers and consortia. In addition, the institute conducts its own multidisciplinary research in computational biomedicine and related fields. BSC’s alliances also encompass a range of hospitals and medical centers, enabling it to validate and test its models and tools with data from clinical institutions. “We’re at an exciting moment,” Torrents said. “We are not just developing new solutions for personalized medicine, but now are beginning a pilot program in January 2017 to bring them together and apply them in clinical settings, beginning in Catalonia and then throughout Spain.” The panelists say continued leaps forward in precision medicine will come from faster and more sophisticated analysis of larger volumes of more varied data types. “What we want is a more holistic picture, and for that, it’s becoming absolutely critical to combine many diverse data types together for analysis,” said Lowey. To achieve that holistic picture, researchers want to use deep learning and other forms of artificial intelligence. They also want to apply those AI methods to genomic data in combination with imaging data, lifelong clinical records, population studies, environmental studies, and much more. Different aspects of the precision medicine workflow will have varying processing and storage requirements. So the push continues for faster performance with agile or heterogeneous platform architectures rather than a single “silver bullet” approach. The processors will continue as the primary workhorses, supplemented by embedded resources and FPGA accelerators for parts of the workflow. Distributed compute and storage resources will remain crucial, along with advances in applications and tools. As to the clinical impact of these holistic approaches, look no further than Boston Children’s Hospital. Noninvasive prenatal genomic testing can indicate whether a fetus has the risk factors that predispose it to be born with a malformed heart. If genetic testing shows these factors are present, data-intensive digital imaging can reveal whether the heart is actually deformed. By combining genomic with other medical data in this way, clinicians can provide peace of mind for worried parents-to-be, or help them plan for their child’s future. “We’re starting to connect the genetics that predisposes an individual to heart disease, with the imaging to see if the defect is present, and use that information to influence current treatment,” said Warfield. “That information can also help us plan for the child’s longer-term future. We can predict how they’ll do as teenagers and begin to plan accordingly.” Precision medicine is one of the most promising and meaningful applications of high-performance computing today. “It’s still early days, but we’re moving toward an exciting new era of predictive biology and personalized medicine,” said McManus. “Our panelists gave us a great taste of what’s on the horizon. With continued advances in platform technologies, artificial intelligence, and other areas, we create significant opportunities to increase the science of medicine and ultimately improve human health. Intel is excited to empower scientists and clinicians with technology innovations, resources and expertise as we collaborate to make this new era a reality.” Jan Rowell writes about technology trends in HPC, healthcare, life sciences, and other industries.

Loading BSC Inc. collaborators
Loading BSC Inc. collaborators