BRP Powertrain GmbH and Co KG

Austria

BRP Powertrain GmbH and Co KG

Austria
SEARCH FILTERS
Time filter
Source Type

Patent
BRP Powertrain GmbH and Co KG | Date: 2015-09-30

An aircraft propeller drive system has a gear to be driven by an engine and having a first plurality of teeth. A torsion bar has a first end driven by the gear and a second end rotatable relative to the first end about a torsion axis by a torsion angle. An output shaft is driven by the second end and is adapted for connection to a propeller. A clutch has a driven member rotationally fixed to the output shaft and a driving member having a second plurality of teeth. The first and second pluralities of teeth engage each other when a variation in the torsion angle from a mean torsion angle is greater than a predetermined angle. Torque is transferred between the gear and the output shaft via the clutch when the first and second pluralities of teeth engage each other.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: LCE-20-2014 | Award Amount: 3.70M | Year: 2015

The development and adoption of renewable and sustainable energy has become a top priority in Europe, and is Horizon 2020s most prominent theme. Research into new energy methods required to reduce humanitys carbon footprint is an urgent and critical need, and is reliant upon a flow of newly qualified persons in areas as diverse as renewable energy infrastructure management, new energy materials and methods, and smart buildings and transport. Bioenergy is a particularly important field in this respect as it is at the cross-roads of several important European policies, from the Strategic Energy Technology Plan Roadmap on Education and Training (SET-Plan) to the European Bioeconomy Strategy to European Food Safety and Nutrition Policy. European development in this prioritised field is stalled due to a lack of qualified personnel, a lack of cohesion and integration among stakeholders, and poor linkage between professional training and industry needs. To address these problems, BioEnergyTrain brings together fifteen partners from six EU countries to create new post-graduate level curricula in key bioenergy disciplines, and a network of tertiary education institutions, research centres, professional associations, and industry stakeholders encompassing the whole value chain of bioenergy from field/forest to integration into the sustainable energy systems of buildings, settlements and regions. The project will foster European cooperation to provide a highly skilled and innovative workforce across the whole bioenergy value chain, closely following the recommendations of the SET-Plan Education Roadmap.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2015 | Award Amount: 1.38M | Year: 2015

The development and adoption of renewable and sustainable forms of energy has become a major priority for Europe and is an important theme in H2020. Research into new, energy-related technologies to reduce Europes reliance on non-renewable fossil fuels is a critical need, and requires more newly qualified people in areas such as renewable-energy infrastructure management, new energy materials and methods, as well as smart buildings and transport. Bio-energy is particularly relevant to the Work Programme, because it is at the crossroads of several key European policies from the Strategic Energy Technology Plan Roadmap on Education and Training (SET-Plan) to the European Bio-economy Strategy for European Food Safety and Nutrition Policy. So far, technological development has concentrated on using crops and wood for fuel, energy and industrial products. These conventional bio-resources are, however, limited, and the use of nonconventional, currently unused or under-utilised bio-resources provides the best possibility for the growth of the bioeconomy. However, European development in this priority field is failing to keep pace with demand due to a lack of qualified personnel, a lack of cohesion and integration among stakeholders, and poorly developed links between professional training and the real needs of industry. Based on seven work packages the Phoenix RISE project will address these issues by exploiting the complementary expertise of its partners and creating synergies between them through the targeted secondments of staff to advance research and innovation knowledge in bio-energy research. Phoenix is an international, interdisciplinary, cross-sectorial project, bringing together a total of 16 partners: 14 from the EU (5 companies and 9 academic organisations) and two Third-Country academic partners to enhance its collective research excellence and create new, post-graduate-level research training in key disciplines that support the provision of bio-energy.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: FoF.NMP.2011-3 | Award Amount: 3.50M | Year: 2012

Non-destructive testing of components is an important auxiliary process step, not only in post-production but also in regular maintenance. The detection of cracks is currently done by using magnetic particle inspection, which is a decades-old, inefficient and ecologically undesirable process. There is an urgent need in industry to replace this technology with more up-to-date methods that provide fully automatic testing. This project thus aims at the development of an autonomous robotic system for the inspection of metallic and composite parts using thermography. By combining automatic path planning for robots using a process model of thermographic image acquisition and knowledge-based image analysis methods, an inspection robot will be developed that can adapt to new parts within 15 minutes and achieves cycle times in the range of 20-30 seconds. Applications include inspection of metallic and composite parts in the automotive and aircraft industry as well as inspection during regular maintenance, mainly in the aircraft industry, where magnetic particle inspection is often a requirement. Market estimates show a potential of more than 1000 such inspection systems within 5-7 years after the end of the project. Despite a higher initial investment (compared to magnetic particle inspection) the robotic inspection system will save more than 400kEUR after 5 years of operation, thus contributing to a substantial increase in efficiency in these tasks. Furthermore, ecologically undesirable suspensions of magnetic particles that include corrosion-inhibitors can be avoided. The consortium consists of technology providers in robotics, industrial inspection and thermographic cameras and end-users that cover metallic and composite parts in the automotive and aircraft industry. SMEs play a leading role in the project and contribute 60% of the total effort.


Patent
BRP Powertrain GmbH and Co KG | Date: 2014-07-24

An exhaust valve assembly has a valve actuator, a first valve part (FVP) operatively connected to the actuator, a second valve part (SVP), and at least one auxiliary valve operatively connected to the second valve part. When the actuator is in a first position, the FVP is in a fourth position, the SVP is in a seventh position and the at least one auxiliary valve is in a ninth position. When the actuator is in a second position, the FVP is in a fifth position, the SVP is in the seventh position and the at least one auxiliary valve is in the ninth position. When the actuator is in a third position, the FVP is in a sixth position, the SVP is in an eighth position and the at least one auxiliary valve is in a tenth position. The second position is intermediate the first and third positions.


Patent
BRP Powertrain GmbH and Co KG | Date: 2015-07-01

An exhaust valve assembly has a valve actuator, a first valve part (FVP) operatively connected to the actuator, a second valve part (SVP), and at least one auxiliary valve operatively connected to the second valve part. When the actuator is in a first position, the FVP is in a fourth position, the SVP is in a seventh position and the at least one auxiliary valve is in a ninth position. When the actuator is in a second position, the FVP is in a fifth position, the SVP is in the seventh position and the at least one auxiliary valve is in the ninth position. When the actuator is in a third position, the FVP is in a sixth position, the SVP is in an eighth position and the at least one auxiliary valve is in a tenth position. The second position is intermediate the first and third positions.


Patent
BRP Powertrain GmbH and Co KG | Date: 2014-06-30

A continuously variable transmission assembly includes a driving pulley rotatable about a driving pulley axis and a driven pulley rotatable about a driven pulley axis. An endless belt operatively connecting the pulleys defines a belt reference plane, the driving and driven pulley axes passing therethrough. A housing encloses a space, the driving pulley, the driven pulley, and the belt being disposed at least in part therein. A driven pulley inlet and outlet defined in the housing are disposed closer to the driven pulley than the driving pulley. The driven pulley inlet, disposed on a first side of the belt reference plane, is configured to direct air from outside the housing into the space toward the driven pulley. The driven pulley outlet is disposed on a second side of the belt reference plane. Air flows from the space to the outside of the housing via the driven pulley outlet.


Patent
BRP Powertrain GmbH and Co KG | Date: 2016-02-24

An exhaust valve assembly for a two-stroke internal combustion engine has a valve actuator having a first pressure chamber and a second pressure chamber, and a valve operatively connected to the valve actuator. The first and second pressure chambers are adapted for selectively receiving one of a first pressure and a second pressure. The first pressure is higher than the second pressure. The valve actuator moves the valve between at least a first valve position and a second valve position. The valve actuator moves the valve to the first valve position when the first pressure is supplied to the first pressure chamber and the second pressure is supplied to the second pressure chamber. The valve actuator moves the valve to the second valve position when the second pressure is supplied to the first pressure chamber and the first pressure is supplied to the second pressure chamber.


Patent
BRP Powertrain GmbH and Co KG | Date: 2014-07-31

An exhaust valve assembly for a two-stroke internal combustion engine has a valve actuator having a first pressure chamber and a second pressure chamber, and a valve operatively connected to the valve actuator. The first and second pressure chambers are adapted for selectively receiving one of a first pressure and a second pressure. The first pressure is higher than the second pressure. The valve actuator moves the valve between at least a first valve position and a second valve position. The valve actuator moves the valve to the first valve position when the first pressure is supplied to the first pressure chamber and the second pressure is supplied to the second pressure chamber. The valve actuator moves the valve to the second valve position when the second pressure is supplied to the first pressure chamber and the first pressure is supplied to the second pressure chamber.


Patent
BRP Powertrain GmbH and Co KG | Date: 2014-01-31

An internal combustion engine has a crankcase having a first crankcase portion fastened to a second crankcase portion along a first plane, a crankshaft, a cylinder block defining two cylinders, two pistons, and a cylinder head. A crankshaft support defines a crankshaft support aperture. A central portion of the crankshaft is received in the crankshaft support aperture. At least one fastener fastens the crankshaft support to the cylinder block. The at least one fastener is perpendicular to a crankshaft axis and is disposed in a second plane. The crankshaft axis is normal to the first plane. The second plane is one of coplanar with and parallel to the first plane.

Loading BRP Powertrain GmbH and Co KG collaborators
Loading BRP Powertrain GmbH and Co KG collaborators