Providence, RI, United States

Brown University

brown.edu
Providence, RI, United States

Brown University is a private Ivy League research university in Providence, Rhode Island.Founded in 1764 as "The College in the English Colony of Rhode Island and Providence Plantations," Brown is the seventh-oldest institution of higher education in the United States and one of the nine Colonial Colleges established before the American Revolution. At its foundation, Brown was the first college in the United States to accept students regardless of their religious affiliation. Its engineering program, established in 1847, was the first in what is now known as the Ivy League. Brown's New Curriculum—sometimes referred to in education theory as the Brown Curriculum—was adopted by faculty vote in 1969 after a period of student lobbying; the New Curriculum eliminated mandatory "general education" distribution requirements, made students "the architects of their own syllabus," and allowed them to take any course for a grade of satisfactory or unrecorded no-credit. In 1971, Brown's coordinate women's institution, Pembroke College was fully merged into the university.The undergraduate acceptance rate is among the country's most selective with an acceptance rate of 8.6% for the class of 2018. The University comprises The College, the Graduate School, Alpert Medical School, the School of Engineering, the School of Public Health, and the School of Professional Studies . Brown's international programs are organized through the Watson Institute for International Studies. The Brown/RISD Dual Degree Program, offered in conjunction with the Rhode Island School of Design, is a five-year course that awards degrees from both institutions.Brown's main campus is located in the College Hill Historic District in the city of Providence, the second largest city in New England. The University's neighborhood is a federally listed architectural district with a dense concentration of ancient buildings. On the western edge of the campus, Benefit Street contains "one of the finest cohesive collections of restored seventeenth- and eighteenth-century architecture in the United States".Brown University is home to many prominent alumni, known as Brunonians, including current president of the World Bank Jim Yong Kim and Chair of the Federal Reserve Janet Yellen. While considered a small research university, Brown has been affiliated with 7 Nobel laureates as students, faculty, or staff. It has been associated with 54 Rhodes Scholars, 5 National Humanities Medalists, 10 National Medal of Science laureates, and is a leading producer of Fulbright Scholars. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Brown University, Leiserson, Vandin and Wu | Date: 2017-08-09

Methods and devices are provided for performing heat diffusion based genetic analysis. A network comprising a plurality of genes is defined an initial heat score is assigned to each of the plurality of genes. A threshold value for evaluating whether heat will be diffused from each of the plurality of genes within the network is assigned. Heat from at least one of the plurality of genes is diffused across the network, and after reaching equilibrium, the network is partitioned into a hierarchy of subnetworks according to an amount and a direction of heat exchange amongst each of the plurality of genes, and a statistical significance of the partitioned network and/or hierarchy of partitioned networks is assessed.


Methods using DNA Methylation arrays are provided for identifying a cell or mixture of cells and for quantification of alterations in distribution of cells in blood or in tissues, and for diagnosing, prognosing and treating disease conditions, particularly cancer. The methods use fresh and archival samples.


Patent
Brown University | Date: 2016-11-03

Disclosed are computer-readable devices, systems and methods for generating a model of a clothed body. The method includes generating a model of an unclothed human body, the model capturing a shape or a pose of the unclothed human body, determining two-dimensional contours associated with the model, and computing deformations by aligning a contour of a clothed human body with a contour of the unclothed human body. Based on the two-dimensional contours and the deformations, the method includes generating a first two-dimensional model of the unclothed human body, the first two-dimensional model factoring the deformations of the unclothed human body into one or more of a shape variation component, a viewpoint change, and a pose variation and learning an eigen-clothing model using principal component analysis applied to the deformations, wherein the eigen-clothing model classifies different types of clothing, to yield a second two-dimensional model of a clothed human body.


Patent
Rhode Island Hospital and Brown University | Date: 2016-12-23

A thermal accelerant is delivered to a tissue site and localized to modulate the shape, extent or other characteristic of RF or microwave-induced hyperthermic tissue ablation. The accelerant may be provided via an image-guided hand piece or via a lumen added to a microwave antenna, and promotes faster heating, more complete ablation and/or a more extensive treatment region to reduce recurrence of treated cancers, overcoming natural limitations, variations in tissue response and drop-off or thermal loss away from the antenna. The accelerant is delivered as a low-viscosity but heat sensitive fluid, and is fixed in place to provide regions of preferential absorption or heating. Shorter exposure times to heat the far field may allow survival of vulnerable tissue such as vessels, and multiple antennae may be used for effective treatment of irregular or large tumors.


A method and apparatus to manufacture a coherent bundle of scintillating fibers is disclosed. In the method and apparatus, a polymer matrix of a transparent polymer and nanoparticle scintillators is placed on top of a collimated bundle having a plurality of capillaries and pressed in a pressure vessel until the polymer matrix is forced into the capillaries. Pressure is applied via an anvil on top of the polymer matrix. To prevent fracturing of the collimated bundle during pressing, back pressure is supplied to the pressure vessel via a valve, which controls a supply of high pressure gas. Alternatively, the back pressure may also be supplied by a press (and or pressure) and support to the collimated bundle is provided by a high melting point thermoplastic. Heat may be applied to the polymer matrix via the anvil to speed the pressing operation due to the viscosity of the polymer.


Patent
Brown University and Therapyx, Inc. | Date: 2017-06-21

Compositions for stabilizing and delivering proteins and/or other bioactive agents are disclosed. The bioactive agents are embedded or encapsulated in a crystalline matrix. Typically the bioactive agents are in the form of micro- or nanoparticles. The crystalline matrix confers enhanced stability to the agents embedded therein relative to other microparticulate or nanoparticulate bioactive agents. The carriers are especially useful for stabilizing bioactive macromolecules, such as proteins.


Patent
Brown University | Date: 2017-02-27

A system passively cools, regulates humidity and/or rectifies diffusive transport of water vapor in an interior area within a structure. The system includes a membrane assembly covering a portion of the structure, wherein the membrane has an interior side facing the interior area and an exterior side. The membrane assembly defines a plurality of pores. When cooling, a supply of fluid is provided to the membrane assembly so that capillary action of the pores redistributes the fluid to create evaporation and, in turn, the desired heat flow. The membrane assembly can include an architectural membrane coated with a porous matrix coating to form the pores. A pump can provide the fluid to the interior side of the membrane assembly. Preferably, the architectural membrane is woven PTFE-coated fiberglass and the porous matrix coating is titanium dioxide, zeolites and/or silica gel.


Patent
Brown University and Wayne State University | Date: 2016-12-29

A therapeutic composition for treating brain injury comprising a polyarginine peptide of from 5 to 9 arginines, and further comprising 1 or more terminal cysteines. The composition is administered in therapeutically effective dosages prophylactically or as soon as possible post-injury in treating neuronal injury.


Methods and systems are disclosed for measuring multidimensional stress characteristics in a substrate. Generally, the methods include applying a sequence of optical pump pulses to the substrate. The optical pump pulses induce a propagating strain pulse in the substrate. Optical probe pulses are also applied. By analyzing transient optical responses caused by the propagating strain pulse, multidimensional stress components characterizing the stress in the substrate can be determined. Multidimensional stress components may also be determined at a depth of a substrate. Multidimensional stress components may also be determined at areas adjacent a through-silicon via.


Powers T.R.,Brown University
Reviews of Modern Physics | Year: 2010

Motivated by the motion of biopolymers and membranes in solution, this article presents a formulation of the equations of motion for curves and surfaces in a viscous fluid. The focus is on geometrical aspects and simple variational methods for calculating internal stresses and forces, and the full nonlinear equations of motion are derived. In the case of membranes, particular attention is paid to the formulation of the equations of hydrodynamics on a curved, deforming surface. The formalism is illustrated by two simple case studies: (1) the twirling instability of straight elastic rod rotating in a viscous fluid and (2) the pearling and buckling instabilities of a tubular liposome or polymersome. © 2010 The American Physical Society.

Loading Brown University collaborators
Loading Brown University collaborators