Time filter

Source Type

Nottingham, United Kingdom

The British Geological Survey is a partly publicly funded body which aims to advance geoscientific knowledge of the United Kingdom landmass and its continental shelf by means of systematic surveying, monitoring and research. The BGS headquarters are in Keyworth, Nottinghamshire, but other centres are located in Edinburgh, Wallingford, Cardiff and London. The current motto of the BGS is: Applied Geoscience for our changing earth. Wikipedia.

Ludden J.,British Geological Survey
Elements | Year: 2015

Geochemical data and models can provide a baseline by which to compare changes in the composition of surface waters, groundwater, the atmosphere, soils, and sediments in the coastal megacity of London. The usefulness of geochemical data is dependent on effective communication, which can be challenging. Geochemical tools and approaches can provide evidence to underpin decision making as well as solutions to environmental problems in cities. Geochemists must move beyond simple provision of evidence to describing a solution and then convincing politicians to put this solution into practice. Source

Hamilton B.,British Geological Survey
Earth, Planets and Space | Year: 2013

As part of the European Space Agency (ESA) Swarm mission, ESA has commissioned an independent scientific consortium known as the Swarm satellite Constellation Application and Research Facility (SCARF) to develop and operate the Level 2 Processor (L2PS). Its purpose is to derive high quality scientific products from the mission's data. One such product is the Fast-Track Magnetospheric Model (FTMM), which is a model of the large scale vector magnetospheric field and its induced counterpart. This model is generated once per satellite orbit, in near real-time by a robust, autonomous algorithm. Its intended use is similar to that of the Disturbance storm time Index (Dst): characterising the rapidly varying magnetospheric field, as an input to other global field models, and for the space weather community. In this paper we describe in detail the FTMM algorithm and assess its ability to recover the magnetospheric component from the consortium's test satellite data set as well as real data from the CHAMP satellite. Copyright © NERC, 2013. All Rights Reserved. Source

Musson R.M.W.,British Geological Survey
Bulletin of Earthquake Engineering | Year: 2013

The work of John Milne, the centenary of whose death is marked in 2013, has had a large impact in the development in global seismology. On his return from Japan to England in 1895, he established for the first time a global earthquake recording network, centred on his observatory at Shide, Isle of Wight. His composite bulletins, the "Shide Circulars" developed, in the twentieth century, into the world earthquake bulletins of the International Seismological Summary and eventually the International Seismological Centre, which continues to publish the definitive earthquake parameters of world earthquakes on a monthly basis. In fact, seismology has a long tradition in Britain, stretching back to early investigations by members of the Royal Society after 1660. Investigations in Scotland in the early 1840s led to a number of firsts, including the first network of instruments, the first seismic bulletin, and indeed, the first use of the word "seismometer", from which words like "seismology" are a back-formation. This paper will present a chronological survey of the development of seismology in the British Isles, from the first written observations of local earthquakes in the seventh century, and the first theoretical writing on earthquakes in the twelfth century, up to the monitoring of earthquakes in Britain in the present day. © 2013 The Author(s). Source

The evolution of Earth's biosphere, atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates. The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass, subsequently breaking up and dispersing into various continental fragments. Columbia is possibly the first true supercontinent, it amalgamated during the 2.0-1.7 Ga period, and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga. Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga. Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however, palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful. Rather than dispersing into continental fragments, the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1-0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts. Although Columbia provides evidence for a form of 'lid tectonics', modern style plate tectonics occurred on its periphery in the form of accretionary orogens. The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins. The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry. Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus, the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.© 2013, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. All rights reserved. Source

Benton M.J.,University of Bristol | Newell A.J.,British Geological Survey
Gondwana Research | Year: 2014

Geologists and palaeontologists have expressed mixed views about the effects of the end-Permian mass extinction on continental habitats and on terrestrial life. Current work suggests that the effects on land were substantial, with massive erosion following the stripping of vegetation, associated with long-term aridification and short-term bursts of warming and acid rain. Wildfires at the Permo-Triassic boundary contributed to the removal of forests and the prolonged absence of forests from the Earth's surface for up to 10. Myr. These physical crises on land impinged on the oceans, suggesting tight interlocking of terrestrial and marine crises. Levels of extinction on land may well have been as high as in the sea, and this is certainly the case for tetrapods. The mass extinction seems to have been less profound for plants and insects, but it is hard at present to disentangle issues of data quality from reductions in abundance and diversity. Several killing agents have been proposed, and of these tetrapods may have succumbed primarily to acid rain, mass wasting, and aridification. Plants may have been more affected by the sudden effects of heating and wildfires, and the crisis for insects has yet to be explored. © 2012 International Association for Gondwana Research. Source

Discover hidden collaborations