Sunnyvale, CA, United States
Sunnyvale, CA, United States
SEARCH FILTERS
Time filter
Source Type

Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.


A light source and method for making the same are disclosed. The light source includes a plurality of Segmented LEDs connected in parallel to a power bus and a controller. The power bus accepts a variable number of Segmented LEDs. The controller receives AC power and provides a power signal on the power bus. Each Segmented LED is characterized by a driving voltage that is greater than 3 times the driving voltage of a conventional LED fabricated in the same material system as the Segmented LED. The number of Segmented LEDs in the light source is chosen to compensate for variations in the light output of individual Segmented LEDs introduced by the manufacturing process. In another aspect of the invention, the number of Segmented LEDs connected to the power bus can be altered after the light source is assembled.


Patent
BridgeLux | Date: 2017-02-02

A light source that is adapted to replace existing fluorescent tubes in an existing fluorescent light fixture is disclosed. The light source includes a plurality of LEDs mounted on a heat-dissipating structure, first and second plug adapters that mate with the florescent tube connectors of the fluorescent tube the light source is to replace, and a power adapter that converts power from a fluorescent tube ballast presented on the first and second plug adapters to DC power that powers the LEDs. The light source is powered from the output of the existing fluorescent ballast. The light source can utilize the existing metallic enclosure as a heat-radiating surface and/or direct air heat transfer from the surface of the heat-dissipating structure.


Flip chip LEDs include a transparent substrate or carrier having an active material attached thereto and having a number of electrodes disposed along a common surface of the active material. The substrate may include a number of surface features disposed along a first surface adjacent the active material for improving light extraction from the active material, and includes a number of surface features along a second surface opposite the first surface for minimizing internal reflection of light through the substrate, thereby improving light extraction from the transparent substrate. The surface features on both surfaces may be arranged having a random or ordered orientation relative to one another. A plurality of such flip chip LEDs may be physically packaged together in a manner providing electrical connection with the same for a lighting end-use application.


Patent
BridgeLux | Date: 2016-11-30

Various methods and apparatuses are disclosed. A method may include disposing at least one die on a location on a carrier substrate, forming at least one stud bump on each of at least one die, forming a phosphor layer on the at least one stud bump and the at least one die, removing a top portion of the phosphor layer to expose the at least one stud bump, and removing a side portion of the phosphor layer located between two adjacent dies. An apparatus may include a die comprising top, bottom, and side surfaces. A phosphor layer may be disposed on the top, bottom, and side surfaces of the die. The phosphor layer may have substantially equal thicknesses on the top and side surfaces of the die as well as one or more stud bumps disposed on the top surface of the die.


Patent
BridgeLux | Date: 2016-01-05

A low-cost device for packaging LED dies provides superior reflectivity and thermal conductivity without covering entire surfaces of an LED luminaire with an expensive reflective aluminum substrate. The LED packaging device includes a highly reflective substrate disposed in a hole in a printed circuit board. The substrate has a reflectivity greater than 97% and includes an insulating layer and a reflective layer disposed above a thicker aluminum layer. An LED die is disposed on the top surface of the substrate. The PCB has a layer of glass fiber in resin and a metal layer. The lower surface of the PCB and the bottom surface of the substrate are substantially coplanar. The metal layer of the PCB is electrically coupled to the LED die only through bond wires. Electronic circuitry is disposed on the upper surface of the PCB and is used to control light emitted from the LED die.


Patent
BridgeLux | Date: 2016-05-10

Various methods and apparatuses are disclosed. A method may include disposing at least one die on a location on a carrier substrate, forming at least one stud bump on each of at least one die, forming a phosphor layer on the at least one stud bump and the at least one die, removing a top portion of the phosphor layer to expose the at least one stud bump, and removing a side portion of the phosphor layer located between two adjacent dies. An apparatus may include a die comprising top, bottom, and side surfaces. A phosphor layer may be disposed on the top, bottom, and side surfaces of the die. The phosphor layer may have substantially equal thicknesses on the top and side surfaces of the die as well as one or more stud bumps disposed on the top surface of the die.


A lighting device capable of generating warm or neutral white light using blue light-emitting diodes (LEDs), red LEDs, and/or luminescent material that responds to blue LED emission is disclosed. The lighting device includes multiple first solid-state light-emitting structures (SLSs), second SLSs, and balancing resistor element. The first SLS such as a string of blue LED dies connected in series is able to convert electrical energy to blue optical light, which is partially turned into longer wavelength emission by the luminescent material. The second SLS such as a red LED die is configured to convert electrical energy to red optical light, wherein the second SLSs are connected in series. While the first SLSs and second SLSs are coupled in parallel, the balancing resistor element provides load balance for current redistribution between the first and second SLSs in response to fluctuation of operating temperature.


A LAM/ICM assembly comprises an integrated control module (ICM) and an LED array member (LAM). The ICM includes interconnect through which power from outside the assembly is received. In a first novel aspect, active circuitry is embedded in the ICM. In one example, the circuitry monitors LED operation, controls and supplies power to the LEDs, and communicates information into and out of the assembly. In a second novel aspect, a lighting system comprises an AC-to-DC converter and a LAM/ICM assembly. The AC-to-DC converter outputs a substantially constant current or voltage. The magnitude of the current or voltage is adjusted by a signal output from the LAM/ICM. In a third novel aspect, the ICM includes a built-in switching DC-to-DC converter. An AC-to-DC power supply supplies a roughly regulated supply voltage. The switching converter within the LAM/ICM receives the roughly regulated voltage and supplies a regulated LED drive current to its LEDs.


Patent
BridgeLux | Date: 2016-01-29

Some embodiments of the invention comprise a lighting assembly comprising including a substrate including a first side, a second side and an opening. The lighting assembly includes several electronic components disposed on the first side of the substrate. The lighting assembly includes a light emitting element attached to the substrate on the first side and positioned within the opening of the substrate.

Loading BridgeLux collaborators
Loading BridgeLux collaborators