Time filter

Source Type

Marbiah M.M.,University College London | Harvey A.,University College London | West B.T.,University College London | Louzolo A.,Karolinska Institutet | And 10 more authors.
EMBO Journal | Year: 2014

Prions consist of aggregates of abnormal conformers of the cellular prion protein (PrPC). They propagate by recruiting host-encoded PrP C although the critical interacting proteins and the reasons for the differences in susceptibility of distinct cell lines and populations are unknown. We derived a lineage of cell lines with markedly differing susceptibilities, unexplained by PrPC expression differences, to identify such factors. Transcriptome analysis of prion-resistant revertants, isolated from highly susceptible cells, revealed a gene expression signature associated with susceptibility and modulated by differentiation. Several of these genes encode proteins with a role in extracellular matrix (ECM) remodelling, a compartment in which disease-related PrP is deposited. Silencing nine of these genes significantly increased susceptibility. Silencing of Papss2 led to undersulphated heparan sulphate and increased PrPC deposition at the ECM, concomitantly with increased prion propagation. Moreover, inhibition of fibronectin 1 binding to integrin α8 by RGD peptide inhibited metalloproteinases (MMP)-2/9 whilst increasing prion propagation. In summary, we have identified a gene regulatory network associated with prion propagation at the ECM and governed by the cellular differentiation state. Source

Amary M.F.,Royal National Orthopaedic Hospital | Bacsi K.,Royal National Orthopaedic Hospital | Maggiani F.,Royal National Orthopaedic Hospital | Damato S.,Royal National Orthopaedic Hospital | And 14 more authors.
Journal of Pathology | Year: 2011

Somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in gliomas and acute myeloid leukaemia (AML). Since patients with multiple enchondromas have occasionally been reported to have these conditions, we hypothesized that the same mutations would occur in cartilaginous neoplasms. Approximately 1200 mesenchymal tumours, including 220 cartilaginous tumours, 222 osteosarcomas and another ∼750 bone and soft tissue tumours, were screened for IDH1 R132 mutations, using Sequenom® mass spectrometry. Cartilaginous tumours and chondroblastic osteosarcomas, wild-type for IDH1 R132, were analysed for IDH2 (R172, R140) mutations. Validation was performed by capillary sequencing and restriction enzyme digestion. Heterozygous somatic IDH1/IDH2 mutations, which result in the production of a potential oncometabolite, 2-hydroxyglutarate, were only detected in central and periosteal cartilaginous tumours, and were found in at least 56% of these, ∼40% of which were represented by R132C. IDH1 R132H mutations were confirmed by immunoreactivity for this mutant allele. The ratio of IDH1:IDH2 mutation was 10.6: 1. No IDH2 R140 mutations were detected. Mutations were detected in enchondromas through to conventional central and dedifferentiated chondrosarcomas, in patients with both solitary and multiple neoplasms. No germline mutations were detected. No mutations were detected in peripheral chondrosarcomas and osteochondromas. In conclusion, IDH1 and IDH2 mutations represent the first common genetic abnormalities to be identified in conventional central and periosteal cartilaginous tumours. As in gliomas and AML, the mutations appear to occur early in tumourigenesis. We speculate that a mosaic pattern of IDH-mutation-bearing cells explains the reports of diverse tumours (gliomas, AML, multiple cartilaginous neoplasms, haemangiomas) occurring in the same patient. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Source

MacKay A.,Institute of Cancer Research | Weigelt B.,Cancer Research UK Research Institute | Grigoriadis A.,Breakthrough Breast Cancer Research Unit | Kreike B.,Institute for Radiation Oncology Arnhem | And 6 more authors.
Journal of the National Cancer Institute | Year: 2011

BackgroundBreast cancers can be classified by hierarchical clustering using an "intrinsic" gene list into one of at least five molecular subtypes: basal-like, HER2, luminal A, luminal B, and normal breast-like. Five different intrinsic gene lists composed of varying numbers of genes have been used for molecular subtype identification and classification of breast cancers. The aim of this study was to determine the objectivity and interobserver reproducibility of the assignment of molecular subtype classes by hierarchical cluster analysis.MethodsThree publicly available breast cancer datasets (n = 779) were subjected to two-way average-linkage hierarchical cluster analysis using five distinct intrinsic gene lists. We used free-marginal Kappa statistics to analyze interobserver agreement among five breast cancer researchers for the whole classification and for each molecular subtype separately according to each intrinsic gene list for each breast cancer dataset.ResultsNone of the classification systems tested produced almost perfect agreement (Kappa ≥ 0.81) among observers. However, substantial interobserver agreement (70.8% to 76.1% of the samples and free-marginal Kappa scores from 0.635 to 0.701) was consistently observed in all datasets for four molecular subtypes (luminal, basal-like, HER2, and normal breast-like). When luminal cancers were subdivided (luminal A, B, and C), none of the classification systems produced substantial agreement (Kappa ≥ 0.61) in all the datasets analyzed. Analysis of each subtype separately revealed that only two (basal-like and HER2) could be reproducibly identified by independent observers (Kappa ≥ 0.81).ConclusionsAssignment of molecular subtype classes of breast cancer based on the analysis of dendrograms obtained with hierarchical cluster analysis is subjective and shows modest interobserver reproducibility. For the development of a molecular taxonomy, objective definitions for each molecular subtype and standardized methods for their identification are required. The Author 2011. Published by Oxford University Press.2011This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. © 2011 The Author. Source

Tutt A.,Breakthrough Breast Cancer Research Unit | Robson M.,Sloan Kettering Cancer Center | Garber J.E.,Dana-Farber Cancer Institute | Domchek S.M.,University of Pennsylvania | And 11 more authors.
The Lancet | Year: 2010

Background Olaparib, a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor, induced synthetic lethality in BRCA-deficient cells. A maximum tolerated dose and initial signal of efficacy in BRCA-deficient ovarian cancers have been reported. We therefore assessed the efficacy, safety, and tolerability of olaparib alone in women with BRCA1 or BRCA2 mutations and advanced breast cancer. Methods Women (aged ≥18 years) with confirmed BRCA1 or BRCA2 mutations and recurrent, advanced breast cancer were assigned to two sequential cohorts in a phase 2 study undertaken in 16 centres in Australia, Germany, Spain, Sweden, the UK, and the USA. The first cohort (n=27) was given continuous oral olaparib at the maximum tolerated dose (400 mg twice daily), and the second (n=27) was given a lower dose (100 mg twice daily). The primary efficacy endpoint was objective response rate (ORR). This study is registered with ClinicalTrials.gov, number NCT00494234. Findings Patients had been given a median of three previous chemotherapy regimens (range 1-5 in cohort 1, and 2-4 in cohort 2). ORR was 11 (41%) of 27 patients (95% CI 25-59) in the cohort assigned to 400 mg twice daily, and six (22%) of 27 (11-41) in the cohort assigned to 100 mg twice daily. Toxicities were mainly at low grades. The most frequent causally related adverse events in the cohort given 400 mg twice daily were fatigue (grade 1 or 2, 11 [41%]; grade 3 or 4, four [15%]), nausea (grade 1 or 2, 11 [41%]; grade 3 or 4, four [15%]), vomiting (grade 1 or 2, three [11%]; grade 3 or 4, three [11%]), and anaemia (grade 1 or 2, one [4%]; grade 3 or 4, three [11%]). The most frequent causally related adverse events in the cohort given 100 mg twice daily were nausea (grade 1 or 2, 11 [41%]; none grade 3 or 4) and fatigue (grade 1 or 2, seven [26%]; grade 3 or 4, one [4%]). Interpretation The results of this study provide positive proof of concept for PARP inhibition in BRCA-deficient breast cancers and shows a favourable therapeutic index for a novel targeted treatment strategy in patients with tumours that have genetic loss of function of BRCA1-associated or BRCA2-associated DNA repair. Toxicity in women with BRCA1 and BRCA2 mutations was similar to that reported previously in those without such mutations. Source

Lopez-Garcia M.A.,Institute of Cancer Research | Lopez-Garcia M.A.,University of Seville | Geyer F.C.,Institute of Cancer Research | Natrajan R.,Institute of Cancer Research | And 5 more authors.
Journal of Pathology | Year: 2010

Tubular carcinoma (TC) is an uncommon special type of breast cancer characterized by an indolent clinical course. Although described as part of a spectrum of related lesions named 'low-grade breast neoplasia family' due to immunophenotypical and genetic similarities, TCs, low-grade invasive ductal carcinomas of no special type (IDC-NSTs), and classic invasive lobular carcinomas (ILCs) significantly differ in terms of histological features and clinical outcome. The aim of this study was to investigate whether pure TCs constitute an entity distinct from low-grade IDC-NSTs and from classic ILCs. To define the transcriptomic differences between TCs and IDC-NSTs and ILCs whilst minimizing the impact of histological grade and molecular subtype on their profiles, we subjected a series of grade- and molecular subtype-matched TCs and IDC-NSTs and molecular subtype-matched TCs and classic ILCs to genome-wide gene expression profiling using oligonucleotide microarrays. Unsupervised and supervised analysis revealed that TCs are similar at the transcriptomic level to grade- and molecular subtype-matched IDC-NSTs. However, subtle yet significant differences were detected and validated by quantitative reverse transcriptase-PCR, which may in part explain the reported more favourable outcome of TCs. Transcriptomic differences between TCs and molecular subtype-matched classic ILCs were more overt, predominantly due to lower expression of proliferation and cell cycle genes in TCs and down-regulation of cell adhesion/extracellular matrix-related genes in classic ILCs. Our results support the existence of a 'low-grade breast neoplasia family'; however, the transcriptomes of these lesions display small, yet important differences, which, together with their distinct biological behaviour, warrant their separation as discrete entities. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Source

Discover hidden collaborations