Entity

Time filter

Source Type


Tim C.R.,Federal University of Sao Carlos | Bossini P.S.,Federal University of Sao Paulo | Kido H.W.,Federal University of Sao Carlos | Malavazi I.,Federal University of Sao Carlos | And 5 more authors.
Journal of Photochemistry and Photobiology B: Biology | Year: 2016

The process of bone healing as well as the expression of inflammatory and angiogenic genes after low level laser therapy (LLLT) were investigated in an experimental model of bone defects. Sixty Wistar rats were distributed into control group and laser group (830 nm, 30 mW, 2,8 J, 94 seg). Histopathological analysis showed that LLLT was able to modulate the inflammatory process in the area of the bone defect and also to produce an earlier deposition of granulation tissue and newly formed bone tissue. Microarray analysis demonstrated that LLLT produced an up-regulation of the genes related to the inflammatory process (MMD, PTGIR, PTGS2, Ptger2, IL1, 1IL6, IL8, IL18) and the angiogenic genes (FGF14, FGF2, ANGPT2, ANGPT4 and PDGFD) at 36 h and 3 days, followed by the decrease of the gene expression on day 7. Immunohistochemical analysis revealed that the subjects that were treated presented a higher expression of COX-2 at 36 h after surgery and an increased VEGF expression on days 3 and 7 after surgery. Our findings indicate that LLLT was efficient on accelerating the development of newly formed bone probably by modulating the inflammatory and angiogenic gene expression as well as COX2 and VEGF immunoexpression during the initial phase of bone healing. © 2015 Elsevier B.V. All rights reserved. Source


Tim C.R.,Federal University of Sao Carlos | Bossini P.S.,Federal University of Sao Paulo | Kido H.W.,Federal University of Sao Carlos | Malavazi I.,Federal University of Sao Carlos | And 5 more authors.
Lasers in Medical Science | Year: 2015

This study evaluated the morphological changes produced by LLLT on the initial stages of bone healing and also studied the pathways that stimulate the expression of genes related to bone cell proliferation and differentiation. One hundred Wistar rats were divided into control and treated groups. Noncritical size bone defects were surgically created at the upper third of the tibia. Laser irradiation (Ga-Al-As laser 830 nm, 30 mW, 94 s, 2.8 J) was performed for 1, 2, 3, 5, and 7 sessions. Histopathology revealed that treated animals produced increased amount of newly formed bone at the site of the injury. Moreover, microarray analysis evidenced that LLLT produced a significant increase in the expression TGF-β, BMP, FGF, and RUNX-2 that could stimulate osteoblast proliferation and differentiation, which may be related to improving the deposition of newly formed bone at the site of the injury. Thus, it is possible to conclude that LLLT improves bone healing by producing a significant increase in the expression of osteogenic genes. © 2015, Springer-Verlag London. Source

Discover hidden collaborations