Time filter

Source Type

Vincent A.L.,U.S. Department of Agriculture | Lager K.M.,U.S. Department of Agriculture | Faaberg K.S.,U.S. Department of Agriculture | Harland M.,U.S. Department of Agriculture | And 7 more authors.
Influenza and other Respiratory Viruses | Year: 2010

Background: A novel A/H1N1 was identified in the human population in North America in April 2009. The gene constellation of the virus was a combination from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before been identified in swine or other species. Objectives: The objectives were to (i) evaluate the clinical response of swine following experimental inoculation with pandemic H1N1 2009; (ii) assess serologic cross-reactivity between H1N1 2009 and contemporary SIV antisera; and (iii) develop a molecular assay to differentiate North American-lineage SIV from H1N1 2009. Methods: Experiment 1: Weaned pigs were experimentally infected with A/California/04/2009 (H1N1). Experiment 2: The cross-reactivity of a panel of US SIV H1N1 or H1N2 antisera with three isolates of pandemic A/H1N1 was evaluated. Experiment 3: A polymerase chain reaction (PCR)-based diagnostic test was developed and validated on samples from experimentally infected pigs. Results and Conclusions: In experiment 1, all inoculated pigs demonstrated clinical signs and lesions similar to those induced by endemic SIV. Viable virus and antigen were only detected in the respiratory tract. In experiment 2, serologic cross-reactivity was limited against H1N1 2009 isolates, notably among virus antisera from the same HA phylogenetic cluster. The limited cross-reactivity suggests North American pigs may not be fully protected against H1N1 2009 from previous exposure or vaccination and novel tests are needed to rapidly diagnose the introduction of H1N1 2009. In experiment 3, an RT-PCR test that discriminates between H1N1 2009 and endemic North American SIV was developed and validated on clinical samples. Published 2010. This article is a US Government work and is in the public domain in the USA. Source

Vincent A.L.,Livestock Research Unit | Ciacci-Zanella J.R.,Livestock Research Unit | Ciacci-Zanella J.R.,EMBRAPA Brazilian Agriculture Research Corporation | Lorusso A.,Livestock Research Unit | And 6 more authors.
Vaccine | Year: 2010

The gene constellation of the 2009 pandemic A/H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species. Although its hemagglutinin gene is related to North American H1 SIV, it is unknown if vaccines currently used in U.S. swine would cross-protect against infection with the pandemic A/H1N1. The objective of this study was to evaluate the efficacy of inactivated vaccines prepared with North American swine influenza viruses as well as an experimental homologous A/H1N1 vaccine to prevent infection and disease from 2009 pandemic A/H1N1. All vaccines tested provided partial protection ranging from reduction of pneumonia lesions to significant reduction in virus replication in the lung and nose. The multivalent vaccines demonstrated partial protection; however, none was able to prevent all nasal shedding or clinical disease. An experimental homologous 2009 A/H1N1 monovalent vaccine provided optimal protection with no virus detected from nose or lung at any time point in addition to amelioration of clinical disease. Based on cross-protection demonstrated with the vaccines evaluated in this study, the U.S. swine herd likely has significant immunity to the 2009 A/H1N1 from prior vaccination or natural exposure. However, consideration should be given for development of monovalent homologous vaccines to best protect the swine population thus limiting shedding and the potential transmission of 2009 A/H1N1 from pigs to people. Source

Discover hidden collaborations