Time filter

Source Type

Groningen, Netherlands

Iderberg H.,Lund University | McCreary A.C.,Brains On Line BV | Varney M.A.,Neurolixis, Inc. | Cenci M.A.,Lund University | Newman-Tancredi A.,Neurolixis, Inc.
Neuropharmacology | Year: 2015

Serotonin 5-HT1A receptor agonists reduce l-DOPA-induced dyskinesia (LID) in animal models of Parkinson's disease (PD). Here, we compared the effects of novel 5-HT1A receptor 'biased agonists' on LID in hemiparkinsonian rats. F13714 preferentially activates pre-synaptic 5-HT1A autoreceptors. F15599 preferentially activates cortical postsynaptic 5-HT1A heteroreceptors. The partial agonist, tandospirone, does not differentiate these receptor subpopulations. The drugs were also tested on rotational behavior, rotarod and cylinder test for evaluation of locomotor activity, motor coordination and forelimb akinesia. Finally, the effects of F13714 and F15599 on 5-HT, DA, glutamate, and GABA release were investigated by microdialysis. F13714 abolished l-DOPA-induced AIMs even at very low doses (0.02-0.04 mg/kg). This effect was reversed by the selective 5-HT1A receptor antagonist, WAY100635. F13714 also elicited ipsilateral rotations (which were blocked by WAY100635) and potentiated the rotational activity of a sub-threshold dose of l-DOPA (2 mg/kg). F13714 profoundly inhibited striatal 5-HT release on both sides of the brain, and slightly increased DA release on the intact side. F15599 inhibited the l-DOPA-induced AIMs only at a dose (0.16 mg/kg) that reduced 5-HT release. Tandospirone produced a modest attenuation of peak AIMs severity and did not elicit rotations. F13714, F15599 and tandospirone did not modify the action of l-DOPA in the cylinder test but impaired rotarod performance at the highest doses tested. Targeting 5-HT1A receptors with selective biased agonists exerts distinct effects in the rat model of PD and LID. Preferential activation of 5-HT1A autoreceptors could potentially translate to superior antidyskinetic and l-DOPA dose-sparing effects in PD patients. © 2015 Elsevier Ltd.

Sommer S.,University of Stuttgart | Danysz W.,Merz Pharmaceuticals GmbH | Russ H.,Merz Pharmaceuticals GmbH | Valastro B.,Merz Pharmaceuticals GmbH | And 2 more authors.
International Journal of Neuropsychopharmacology | Year: 2014

Drugs that are able to shift effort-related decision making in intact rats towards high-effort response options are largely unknown. Here, we examined the effects of two candidate drugs, MRZ-9547 and its l-enantiomer MRZ-9546 on progressive ratio (PR) responding using two different tasks, a standard PR task that involves increasing ratio requirements and a PR/chow feeding choice task in which animals can lever press for preferred food pellets under a PR schedule or approach freely available less preferred lab chow. Furthermore, we assessed the mechanisms of action of both drugs using in vitro-assay methods and in vivo-microdialysis. Results reveal that MRZ-9547 is a selective dopamine transporter (DAT) inhibitor that moderately stimulated striatal dopamine release. MRZ-9546 was a much less potent DAT inhibitor. Furthermore, MRZ-9547 dose dependently increased the tendency to work for food reinforcement both in the standard PR task and the PR/chow feeding choice task, MRZ-9546 was considerably less active. Relative to MRZ-9547, other DAT-interfering drugs had only moderate (methylphenidate) or marginal (modafinil, d-amphetamine) stimulant effects on PR responding in either task. Collectively, our data demonstrate that the DAT inhibitor MRZ-9547 can markedly stimulate PR responding and shift effort-related decision making in intact rats towards high-effort response options. An analysis of effort-related decision making in rodents could provide an animal model for motivational dysfunctions related to effort expenditure such as fatigue, e.g. in Parkinson's disease or major depression. Our findings suggest that DAT inhibitors such as MRZ-9547 could be potentially useful for treating energy-related symptoms in neurological or neuropsychiatric disorders. © CINP 2014.

Iderberg H.,Lund University | McCreary A.C.,Brains On Line BV | Varney M.A.,Neurolixis, Inc. | Kleven M.S.,Pierre Fabre | And 6 more authors.
Experimental Neurology | Year: 2015

l-DOPA is the gold-standard treatment for Parkinson's disease (PD), but induces troublesome dyskinesia after prolonged treatment. This is associated with the 'false neurotransmitter' conversion of l-DOPA to dopamine by serotonin neurons projecting from the raphe to the dorsal striatum. Reducing their activity by targeting pre-synaptic 5-HT1A receptors should thus be an attractive therapeutic strategy, but previous 5-HT1A agonists have yielded disappointing results. Here, we describe the activity of a novel, highly selective and potent 5-HT1A agonist, NLX-112 (also known as befiradol or F13640) in rat models relevant to PD and its associated affective disorders. NLX-112 (0.16mg/kg, i.p.) potently and completely reversed haloperidol-induced catalepsy in intact rats and abolished l-DOPA-induced Abnormal Involuntary Movements (AIMs) in hemiparkinsonian rats, an effect that was reversed by the selective 5-HT1A antagonist, WAY100635. In microdialysis experiments, NLX-112 profoundly decreased striatal 5-HT extracellular levels, indicative of inhibition of serotonergic function. NLX-112 also blunted the l-DOPA-induced surge in dopamine levels on the lesioned side of the brain, an action that likely underlies its anti-dyskinetic effects. NLX-112 (0.16. mg/kg, i.p.) robustly induced rotations in hemiparkinsonian rats, suggesting that it has a motor facilitatory effect. Rotations were abolished by WAY100635 and were ipsilateral to the lesioned side, suggesting a predominant stimulation of the dopamine system on the non-lesioned side of the brain. NLX-112 also efficaciously reduced immobility time in the forced swim test (75% reduction at 0.16. mg/kg, i.p.) and eliminated stress-induced ultrasonic vocalization at 0.08. mg/kg, i.p., effects consistent with potential antidepressant- and anxiolytic-like properties. In other tests, NLX-112 (0.01-0.16mg/kg, i.p.) did not impair the ability of l-DOPA to rescue forepaw akinesia in the cylinder test but decreased rotarod performance, probably due to induction of flat body posture and forepaw treading which are typical of 5-HT1A agonists upon acute administration. However, upon repeated administration of NLX-112 (0.63mg/kg, i.p., twice a day), flat body posture and forepaw treading subsided within 4days of treatment. Taken together, these observations suggest that NLX-112 could exhibit a novel therapeutic profile, combining robust anti-dyskinetic properties without impairing the therapeutic properties of l-DOPA, and with additional beneficial effects on non-motor (affective) symptoms. © 2015 Elsevier Inc.

Rollema H.,Pfizer | Wilson G.G.,Pfizer | Lee T.C.,Pfizer | Folgering J.H.A.,Brains On Line BV | Flik G.,Brains On Line BV
Neurochemistry International | Year: 2011

Since a substantial proportion of smokers have comorbid mood disorders, the smoking cessation aid varenicline might occasionally be prescribed to patients who are simultaneously treated with antidepressants. Given that varenicline is a selective nicotinic acetylcholine receptor partial agonist and not a substrate or inhibitor of drug metabolizing enzymes, pharmacokinetic interactions with various classes of antidepressants are highly unlikely. It is, however, conceivable that varenicline may have a pharmacodynamic effect on antidepressant-evoked increases in central monoamine release. Interactions resulting in excessive transmitter release could cause adverse events such as serotonin syndrome, while attenuation of monoamine release could impact the clinical efficacy of antidepressants. To investigate this we examined whether varenicline administration modulates the effects of the selective serotonin reuptake inhibitor sertraline and the monoamine oxidase inhibitor clorgyline, given alone and combined, on extracellular concentrations of the monoamines serotonin, dopamine, and norepinephrine in rat brain by microdialysis. Given the important role attributed to cortical monoamine release in serotonin syndrome as well as antidepressant activity, the effects on extracellular monoamine concentrations were measured in the medial prefrontal cortex. Responses to maximally effective doses of sertraline or clorgyline and of sertraline plus clorgyline were the same in the absence as in the presence of a relatively high dose of varenicline, which by itself had no significant effect on cortical monoamine release. This is consistent with the binding profile of varenicline that has insufficient affinity for receptors, enzymes, or transporters to inhibit or potentiate the pharmacologic effects of antidepressants. Since varenicline neither diminished nor potentiated sertraline- or clorgyline-induced increases in neurotransmitter levels, combining varenicline with serotonergic antidepressants is unlikely to cause excessive serotonin release or to attenuate antidepressant efficacy via effects on cortical serotonin, dopamine or norepinephrine release. © 2010 Elsevier Ltd All rights reserved.

Allers K.A.,Boehringer Ingelheim | Dremencov E.,Brains On Line BV | Ceci A.,Boehringer Ingelheim | Flik G.,Boehringer Ingelheim | And 4 more authors.
Journal of Sexual Medicine | Year: 2010

Introduction. Hypoactive sexual desire disorder (HSDD) is defined as persistent lack of sexual fantasies or desire marked by distress. With a prevalence of 10% it is the most common form of female sexual dysfunction. Recently, the serotonin-1A (5-HT1A) receptor agonist and the serotonin-2A (5-HT2A) receptor antagonist flibanserin were shown to be safe and efficacious in premenopausal women suffering from HSDD in phase III clinical trials. Aim.: The current study aims to assess the effect of flibanserin on neurotransmitters serotonin (5-HT), norepinephrine (NE), dopamine (DA), glutamate, and γ-aminobutyric acid (GABA) in brain areas associated with sexual behavior. Methods.: Flibanserin was administered to female Wistar rats (280-350 g). Microdialysis probes were stereotactically inserted into the mPFC, NAC, or MPOA, under isoflurane anesthesia. The extracellular levels of neurotransmitters were assessed in freely moving animals, 24 hours after the surgery. Main Outcome Measures.: Dialysate levels of DA, NE, and serotonin from medial prefrontal cortex (mPFC), nucleus accumbens (NAC), and hypothalamic medial preoptic area (MPOA) from female rats. Results.: Acute flibanserin administration decreased 5-HT and increased NE levels in all tested areas. DA was increased in mPFC and MPOA, but not in the NAC. Basal levels of NE in mPFC and NAC and of DA in mPFC were increased upon repeated flibanserin administration, when compared to vehicle-treated animals. The basal levels of 5-HT were not altered by repeated flibanserin administration, but basal DA and NE levels were increased in the mPFC. Glutamate and GABA levels remained unchanged following either repeated or acute flibanserin treatment. Conclusions.: Systemic administration of flibanserin to female rats differentially affects the monoamine systems of the brain. This may be the mechanistic underpinning of flibanserin's therapeutic efficacy in HSDD, as sexual behavior is controlled by an intricate interplay between stimulatory (catecholaminergic) and inhibitory (serotonergic) systems. © 2010 International Society for Sexual Medicine.

Discover hidden collaborations