Brain Tumor Center Erasmus

Rotterdam, Netherlands

Brain Tumor Center Erasmus

Rotterdam, Netherlands
SEARCH FILTERS
Time filter
Source Type

Venkatesan S.,Brain Tumor Center Erasmus | Hoogstraat M.,University Utrecht | Caljouw E.,Pepscope BV | Pierson T.,Brain Tumor Center Erasmus | And 16 more authors.
Oncotarget | Year: 2016

Background: Glioblastoma is the most malignant tumor of the central nervous system and still lacks effective treatment. This study explores mutational biomarkers of 11 drugs targeting either the RTK/Ras/PI3K, the p53 or the Rb pathway using 25 patient-derived glioblastoma stem-like cell cultures (GSCs). Results: We found that TP53 mutated GSCs were approximately 3.5 fold more sensitive to dual inhibition of mammalian target of rapamycin complex 1 and 2 (mTORC1/2) compared to wild type GSCs. We identified that Bcl-2(Thr56/Ser70) phosphorylation contributed to the resistance of TP53 wild type GSCs against dual mTORC1/2 inhibition. The Bcl-2 inhibitor ABT-263 (navitoclax) increased sensitivity to the mTORC1/2 inhibitor AZD8055 in TP53 wild type GSCs, while sensitivity to AZD8055 in TP53 mutated GSCs remained unchanged. Conclusion: Our data suggest that Bcl-2 confers resistance to mTORC1/2 inhibitors in TP53 wild type GSCs and that combined inhibition of both mTORC1/2 and Bcl-2 is worthwhile to explore further in TP53 wild type glioblastomas, whereas in TP53 mutated glioblastomas dual mTORC1/2 inhibitors should be explored.


Pont L.M.E.B.,Brain Tumor Center Erasmus | Balvers R.K.,Brain Tumor Center Erasmus | Kloezeman J.J.,Brain Tumor Center Erasmus | Nowicki M.O.,Harvard University | And 11 more authors.
Gene Therapy | Year: 2015

Oncolytic viruses (OV) have broad potential as an adjuvant for the treatment of solid tumors. The present study addresses the feasibility of clinically applicable drugs to enhance the oncolytic potential of the OV Delta24-RGD in glioblastoma. In total, 446 drugs were screened for their viral sensitizing properties in glioblastoma stem-like cells (GSCs) in vitro. Validation was done for 10 drugs to determine synergy based on the Chou Talalay assay. Mechanistic studies were undertaken to assess viability, replication efficacy, viral infection enhancement and cell death pathway induction in a selected panel of drugs. Four viral sensitizers (fluphenazine, indirubin, lofepramine and ranolazine) were demonstrated to reproducibly synergize with Delta24-RGD in multiple assays. After validation, we underscored general applicability by testing candidate drugs in a broader context of a panel of different GSCs, various solid tumor models and multiple OVs. Overall, this study identified four viral sensitizers, which synergize with Delta24-RGD and two other strains of OVs. The viral sensitizers interact with infection, replication and cell death pathways to enhance efficacy of the OV. © 2015 Macmillan Publishers Limited. All rights reserved.


PubMed | University Utrecht, Brain Tumor Center Erasmus, Pepscope BV and Netherlands Cancer Institute
Type: Journal Article | Journal: Oncotarget | Year: 2016

Glioblastoma is the most malignant tumor of the central nervous system and still lacks effective treatment. This study explores mutational biomarkers of 11 drugs targeting either the RTK/Ras/PI3K, the p53 or the Rb pathway using 25 patient-derived glioblastoma stem-like cell cultures (GSCs).We found that TP53 mutated GSCs were approximately 3.5 fold more sensitive to dual inhibition of mammalian target of rapamycin complex 1 and 2 (mTORC1/2) compared to wild type GSCs. We identified that Bcl-2(Thr56/Ser70) phosphorylation contributed to the resistance of TP53 wild type GSCs against dual mTORC1/2 inhibition. The Bcl-2 inhibitor ABT-263 (navitoclax) increased sensitivity to the mTORC1/2 inhibitor AZD8055 in TP53 wild type GSCs, while sensitivity to AZD8055 in TP53 mutated GSCs remained unchanged.Our data suggest that Bcl-2 confers resistance to mTORC1/2 inhibitors in TP53 wild type GSCs and that combined inhibition of both mTORC1/2 and Bcl-2 is worthwhile to explore further in TP53 wild type glioblastomas, whereas in TP53 mutated glioblastomas dual mTORC1/2 inhibitors should be explored.

Loading Brain Tumor Center Erasmus collaborators
Loading Brain Tumor Center Erasmus collaborators