Mount Pleasant, MI, United States
Mount Pleasant, MI, United States

Time filter

Source Type

Rossignol J.,Central Michigan University | Fink K.D.,University of Nantes | Crane A.T.,Brain Research and Integrative Neuroscience Center | Davis K.K.,Brain Research and Integrative Neuroscience Center | And 8 more authors.
Stem Cell Research and Therapy | Year: 2015

Introduction: Huntington's disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat (greater than 38) on the short arm of chromosome 4, resulting in loss and dysfunction of neurons in the neostriatum and cortex, leading to cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Although an effective treatment for HD has remained elusive, current studies using transplants of bone-marrow-derived mesenchymal stem cells provides considerable promise. This study further investigates the efficacy of these transplants with a focus on comparing how passage number of these cells may affect subsequent efficacy following transplantation. Methods: In this study, mesenchymal stem cells isolated from the bone-marrow of mice (BM MSCs), were labeled with Hoechst after low (3 to 8) or high (40 to 50) numbers of passages and then transplanted intrastriatally into 5-week-old R6/2 mice, which carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops symptoms analogous to the human form of the disease. Results: It was observed that the transplanted cells survived and the R6/2 mice displayed significant behavioral and morphological sparing compared to untreated R6/2 mice, with R6/2 mice receiving high passage BM MSCs displaying fewer deficits than those receiving low-passage BM MSCs. These beneficial effects are likely due to trophic support, as an increase in brain derived neurotrophic factor mRNA expression was observed in the striatum following transplantation of BM MSCs. Conclusion: The results from this study demonstrate that BM MSCs hold significant therapeutic value for HD, and that the amount of time the cells are exposed to in vitro culture conditions can alter their efficacy. © 2015 Rossignol et al.; licensee BioMed Central.


Rossignol J.,Brain Research and Integrative Neuroscience Center | Rossignol J.,Central Michigan University | Fink K.D.,Brain Research and Integrative Neuroscience Center | Fink K.D.,University of Nantes | And 13 more authors.
Stem Cell Research and Therapy | Year: 2015

Introduction: Huntington's disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat (greater than 38) on the short arm of chromosome 4, resulting in loss and dysfunction of neurons in the neostriatum and cortex, leading to cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Although an effective treatment for HD has remained elusive, current studies using transplants of bone-marrow-derived mesenchymal stem cells provides considerable promise. This study further investigates the efficacy of these transplants with a focus on comparing how passage number of these cells may affect subsequent efficacy following transplantation. Methods: In this study, mesenchymal stem cells isolated from the bone-marrow of mice (BM MSCs), were labeled with Hoechst after low (3 to 8) or high (40 to 50) numbers of passages and then transplanted intrastriatally into 5-week-old R6/2 mice, which carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops symptoms analogous to the human form of the disease. Results: It was observed that the transplanted cells survived and the R6/2 mice displayed significant behavioral and morphological sparing compared to untreated R6/2 mice, with R6/2 mice receiving high passage BM MSCs displaying fewer deficits than those receiving low-passage BM MSCs. These beneficial effects are likely due to trophic support, as an increase in brain derived neurotrophic factor mRNA expression was observed in the striatum following transplantation of BM MSCs. Conclusion: The results from this study demonstrate that BM MSCs hold significant therapeutic value for HD, and that the amount of time the cells are exposed to in vitro culture conditions can alter their efficacy. © 2015 Rossignol et al.; licensee BioMed Central.

Loading Brain Research and Integrative Neuroscience Center collaborators
Loading Brain Research and Integrative Neuroscience Center collaborators