Entity

Time filter

Source Type

Seoul, South Korea

Jang J.H.,Kyungpook National University | Jung J.,Brain Korea | Jung J.,Yonsei University | Kim A.R.,Seoul National University | And 6 more authors.
Audiology and Neurotology | Year: 2014

Mutations in the SLC26A4 gene, which encodes pendrin, cause congenital hearing loss as a manifestation of Pendred syndrome (PS) with an iodide organification defect or nonsyndromic enlarged vestibular aqueduct (NSEVA, DFNB4). There have been reports of differences between PS and NSEVA, including their auditory phenotypes and molecular genetic bases. For appropriate genetic diagnosis and counseling, it is important to functionally characterize SLC26A4 variants. In this study, we identified and evaluated a novel null mutation of SLC26A4 and report our method of assessing the pathogenic potential of mutations in SLC26A4, one of the most frequent causative genes of deafness in humans. A 3-year-old female with progressive sensorineural hearing loss and her parents were recruited. They underwent clinical, audiological, radiological and genetic evaluations, which revealed that the female patient had an enlarged vestibular aqueduct and an incomplete partition type II anomaly in the cochlea bilaterally. Sanger sequencing of the SLC26A4 gene was also performed. For a confirmatory genetic diagnosis, we first characterized the anion/base exchange ability of mutant pendrin products in HEK 293 cells and, if necessary, evaluated whether the mutant pendrin traffics to the plasma membrane in COS-7 cells. We also expressed a null function mutant, p.H723R, and a previously documented polymorphism, p.P542R, as controls. The pure tone average was 66 dB HL in the right ear and 75 dB HL in the left ear. Sequencing of SLC26A4 revealed a known pathogenic mutation (p.H723R) and a novel missense variant (p.V510D) as a compound heterozygote. When we expressed the p.V510D mutant pendrin in mammalian cells, the rate constants for Cl-/HCO3-exchange were 10.96 ± 4.79% compared with those of wild-type pendrin. This figure was comparable to that of p.H723R, indicating p.V510D to be another pathogenic mutation with a null function. The p.V510D pendrin product was shown to be entrapped in the endoplasmic reticulum (ER) at 24-30 h after transfection, and not trafficked to the plasma membrane in COS-7 cells, suggesting retention in the ER and abnormal trafficking as the pathogenic mechanism. This was similar to p.H723R, which is a null function founder mutant in this population but is a candidate variant for future drug therapy to rescue the abnormal cell trafficking. Impaired cellular trafficking due to ER retention and abolished exchange activity of the newly detected p.V510D indicates the pathogenic potential of this variant. These missense variants may be good candidate variants for drug therapy if the intrinsic exchange activity is not damaged by the change. © 2014 S. Karger AG, Basel. Source


Kim S.,Kyungpook National University | Rahman M.,Kyungpook National University | Seol S.Y.,Kyungpook National University | Yoon S.S.,Brain Korea | And 2 more authors.
Applied and Environmental Microbiology | Year: 2012

We isolated a new lytic Pseudomonas aeruginosa phage that requires type IV pili for infection. PA1Ø has a broad bactericidal spectrum, covering Gram-positive and Gram-negative bacteria, and can eradicate biofilm cells. PA1Ø may be developed as a therapeutic agent for biofilm-related mixed infections with P. aeruginosa and Staphylococcus aureus. © 2012, American Society for Microbiology. Source


Gee H.Y.,Brain Korea | Kim C.K.,Inje University | Kim S.W.,Brain Korea | Lee J.H.,Brain Korea | And 3 more authors.
Journal of Korean Medical Science | Year: 2010

Cystic fibrosis (CF) is an autosomal recessive disorder usually found in populations of white Caucasian descent. CF is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. A 5-yr-old Korean girl was admitted complaining of coughing and greenish sputum. Chest radiographs and computed tomographic (CT) scan revealed diffuse bronchiectasis in both lungs. The patient had chronic diarrhea and poor weight gain, and the abdominal pancreaticobiliary CT scan revealed atrophy of the pancreas. Finally, CF was confirmed by the repeated analysis of the quantitative pilocarpine iontophoresis test. The chloride concentration of sweat samples taken from both forearms of the pateint was an average of 88.7 mM/L (normal value <40 mM/L). After a comprehensive search for mutations in the CFTR gene, the patient was found to carry the non-synonymous L441P mutation in one allele. Molecular physiologic analysis of the L441P mutation of CFTR revealed that the L441P mutation completely abolished the CFTR Cl-channel activity by disrupting proper protein folding and membrane trafficking of CFTR protein. These results confirmed the pathogenicity of the L441P mutation of CFTR circulating in the Korean population. The possibility of CF should be suspected in patients with chronic bronchiectasis, although the frequency of CF is relatively rare in East Asia. © 2010 The Korean Academy of Medical Sciences. Source


Huh Y.J.,Brain Korea | Huh Y.J.,Yonsei University | Kim D.-W.,Brain Korea | Kim D.-W.,Stem Cell Research Center
Journal of the Korean Medical Association | Year: 2011

We are now in the middle of stem cell war. Each country is trying to invest a large amount of funds into stem cell research. This is due to a potentiality of stem cells. Stem cells are capable of proliferating in an undifferentiated manner and are able to differentiate into a desired cell lineage under certain conditions. These abilities make stem cells an appealing source for cell replacement therapies (regenerative medicine), the study of developmental biology and drug/toxin screening. In addition to embryonic and adult stem cells, induced pluripotent stem (iPS) cells has been recently generated through reprogramming from adult tissue cells such as fibroblasts. This technique has opened up new avenues to generate patient- and disease-specific pluripotent stem cells. Human iPS cells may be useful for gaining valuable insight into the pathophysiology of disease, as well as for discovering for new prognostic biomarkers and drug screening. Moreover, the iPS cell technology may play a major role in immune-matched clinical application in the future. In this chapter, we introduce general characteristics of various stem cells, clinical application of stem cells and future perspectives. © Korean Medical Association. Source


Lee H.J.,Brain Korea | Lee E.J.,Brain Korea | Seo M.,Yonsei University
Yonsei Medical Journal | Year: 2016

Purpose: Apoptosis of vascular endothelial cells is a type of endothelial damage that is associated with the pathogenesis of cardiovascular diseases such as atherosclerosis. Heterotrimeric GTP-binding proteins (G proteins), including the alpha 12 subunit of G protein (Gα12), have been found to modulate cellular proliferation, differentiation, and apoptosis of numerous cell types. However, the role of Gα12 in the regulation of apoptosis of vascular cells has not been elucidated. We investigated the role of Gα12 in serum withdrawal-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and its underlying mechanisms. Materials and Methods: HUVECs were transfected with Gα12 small-interfering RNA (siRNA) to knockdown the endogenous Gα12 expression and were serum-deprived for 6 h to induce apoptosis. The apoptosis of HUVECs were assessed by Western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expressions of microRNAs were analyzed by quantitative real-time PCR. Results: Knockdown of Gα12 with siRNA augmented the serum withdrawal-induced apoptosis of HUVECs and markedly repressed the expression of microRNA-155 (miR-155). Serum withdrawal-induced apoptosis of HUVECs was inhibited by the overexpression of miR-155 and increased significantly due to the inhibition of miR-155. Notably, the elevation of miR-155 expression prevented increased apoptosis of Gα12-deficient HUVECs. Conclusion: From these results, we conclude that Gα12 protects HUVECs from serum withdrawal-induced apoptosis by retaining miR-155 expression. This suggests that Gα12 might play a protective role in vascular endothelial cells by regulating the expression of microRNAs. © Yonsei University College of Medicine 2016. Source

Discover hidden collaborations