Brain Activity Imaging Center

Kyoto, Japan

Brain Activity Imaging Center

Kyoto, Japan
SEARCH FILTERS
Time filter
Source Type

Kitada R.,National Institute for Physiological science | Kitada R.,Graduate University for Advanced Studies | Yoshihara K.,Kyushu University | Sasaki A.T.,Osaka City University | And 7 more authors.
Journal of Neuroscience | Year: 2014

The visual perception of others' body parts is critical for understanding and imitating their behavior. The visual cortex in humans includes the extrastriate body area (EBA), which is a large portion of the occipitotemporal cortex that is selectively responsive to visually perceived body parts. Previous neuroimaging studies showed that the EBA not only receives sensory inputs regarding others' body information but also receives kinesthetic feedback regarding one's own actions. This finding raised the possibility that the EBA could be formed via nonvisual sensory modalities. However, the effect of visual deprivation on the formation of the EBA has remained largely unknown. Here, we used fMRI to investigate the effect of vision loss on the development of the EBA. Blind and sighted human subjects performed equally well in a haptic-identification task involving three categories of objects (hand shapes, toy cars, and teapots). The superior part (i.e., the middle temporal gyrus and angular gyrus) of the EBA and the supramarginal gyrus showed greater sensitivity to recognized hand shapes than to inanimate objects, regardless of the sensory modality and visual experience. Unlike the superior part of the EBA, the sensitivity of the inferior part (i.e., the inferior temporal sulcus and middle occipital gyrus) depended on visual experience. However, this vision-dependent sensitivity explained minor individual differences in hand-recognition performance. These results indicate that nonvisual modalities drive the development of the cortical network underlying the recognition of hand gestures with a node in the visual cortex. © 2014 the authors.


Kitada R.,National Institute for Physiological science | Kitada R.,Graduate University for Advanced Studies | Sasaki A.T.,Osaka City University | Sasaki A.T.,RIKEN | And 4 more authors.
Neuropsychologia | Year: 2014

Visual clues as to the physical substance of manufactured objects can be misleading. For example, a plastic ring can appear to be made of gold. However, we can avoid misidentifying an object's substance by comparing visual and tactile information. As compared to the spatial properties of an object (e.g., orientation), however, little information regarding physical object properties (material properties) is shared between vision and touch. How can such different kinds of information be compared in the brain? One possibility is that the visuo-tactile comparison of material information is mediated by associations that are previously learned between the two modalities. Previous studies suggest that a cortical network involving the medial temporal lobe and precuneus plays a critical role in the retrieval of information from long-term memory. Here, we used functional magnetic resonance imaging (fMRI) to test whether these brain regions are involved in the visuo-tactile comparison of material properties. The stimuli consisted of surfaces in which an oriented plastic bar was placed on a background texture. Twenty-two healthy participants determined whether the orientations of visually- and tactually-presented bar stimuli were congruent in the orientation conditions, and whether visually- and tactually-presented background textures were congruent in the texture conditions. The texture conditions revealed greater activation of the fusiform gyrus, medial temporal lobe and lateral prefrontal cortex compared with the orientation conditions. In the texture conditions, the precuneus showed greater response to incongruent stimuli than to congruent stimuli. This incongruency effect was greater for the texture conditions than for the orientation conditions. These results suggest that the precuneus is involved in detecting incongruency between tactile and visual texture information in concert with the medial temporal lobe, which is tightly linked with long-term memory. © 2014 Elsevier Ltd.


Kitada R.,National Institute for Physiological science | Johnsrude I.S.,Queen's University | Kochiyama T.,Brain Activity Imaging Center | Lederman S.J.,Queen's University
NeuroImage | Year: 2010

Previous neurophysiological and neuroimaging studies have shown that a cortical network involving the inferior frontal gyrus (IFG), inferior parietal lobe (IPL) and cortical areas in and around the posterior superior temporal sulcus (pSTS) region is employed in action understanding by vision and audition. However, the brain regions that are involved in action understanding by touch are unknown. Lederman et al. (2007) recently demonstrated that humans can haptically recognize facial expressions of emotion (FEE) surprisingly well. Here, we report a functional magnetic resonance imaging (fMRI) study in which we test the hypothesis that the IFG, IPL and pSTS regions are involved in haptic, as well as visual, FEE identification. Twenty subjects haptically or visually identified facemasks with three different FEEs (disgust, neutral and happiness) and casts of shoes (shoes) of three different types. The left posterior middle temporal gyrus, IPL, IFG and bilateral precentral gyrus were activated by FEE identification relative to that of shoes, regardless of sensory modality. By contrast, an inferomedial part of the left superior parietal lobule was activated by haptic, but not visual, FEE identification. Other brain regions, including the lingual gyrus and superior frontal gyrus, were activated by visual identification of FEEs, relative to haptic identification of FEEs. These results suggest that haptic and visual FEE identification rely on distinct but overlapping neural substrates including the IFG, IPL and pSTS region. © 2009 Elsevier Inc. All rights reserved.


Matsuyoshi D.,National Institute for Physiological science | Matsuyoshi D.,Osaka University | Matsuyoshi D.,Tokyo University of Science | Morita T.,National Institute for Physiological science | And 9 more authors.
Journal of Neuroscience | Year: 2015

Humans’ ability to recognize objects is remarkably robust across a variety of views unless faces are presented upside-down. Whether this face inversion effect (FIE) results from qualitative (distinct mechanisms) or quantitative processing differences (a matter of degree within common mechanisms) between upright and inverted faces has been intensely debated. Studies have focused on preferential responses to faces in face-specific brain areas, although face recognition also involves nonpreferential responses in non-face-specific brain areas. By using dynamic causal modeling with Bayesian model selection, here we show that dissociable cortical pathways are responsible for qualitative and quantitative mechanisms in the FIE in the distributed network for face recognition. When faces were upright, the early visual cortex (VC) and occipital and fusiform face areas (OFA, FFA) suppressed couplings to the lateral occipital cortex (LO), a primary locus of object processing. In contrast, they did not inhibit the LO when faces were inverted but increased couplings to the intraparietal sulcus, which has been associated with visual working memory. Furthermore, we found that upright and inverted face processing together involved the face network consisting of the VC, OFA, FFA, and inferior frontal gyrus. Specifically, modulatory connectivity within the common pathways (VC-OFA), implicated in the parts-based processing of faces, strongly correlated with behavioral FIE performance. The orientation-dependent dynamic reorganization of effective connectivity indicates that the FIE is mediated by both qualitative and quantitative differences in upright and inverted face processing, helping to resolve a central debate over the mechanisms of the FIE. © 2015 the authors.


PubMed | Japan Women's University, Nippon Telegraph and Telephone and Brain Activity Imaging Center
Type: Journal Article | Journal: Philosophical transactions of the Royal Society of London. Series B, Biological sciences | Year: 2017

Recent studies have shown that interindividual variability can be a rich source of information regarding the mechanism of human visual perception. In this study, we examined the mechanisms underlying interindividual variability in the perception of visual motion, one of the fundamental components of visual scene analysis, by measuring neurotransmitter concentrations using magnetic resonance spectroscopy. First, by psychophysically examining two types of motion phenomena-motion assimilation and contrast-we found that, following the presentation of the same stimulus, some participants perceived motion assimilation, while others perceived motion contrast. Furthermore, we found that the concentration of the excitatory neurotransmitter glutamate-glutamine (Glx) in the dorsolateral prefrontal cortex (Brodmann area 46) was positively correlated with the participants tendency to motion assimilation over motion contrast; however, this effect was not observed in the visual areas. The concentration of the inhibitory neurotransmitter -aminobutyric acid had only a weak effect compared with that of Glx. We conclude that excitatory process in the suprasensory area is important for an individuals tendency to determine antagonistically perceived visual motion phenomena.This article is part of the themed issue Auditory and visual scene analysis.


PubMed | Osaka National University, Osaka University of Human Sciences, Japan National Institute of Environmental Studies, Brain Activity Imaging Center and Graduate University for Advanced Studies
Type: Journal Article | Journal: The Journal of neuroscience : the official journal of the Society for Neuroscience | Year: 2015

Humans ability to recognize objects is remarkably robust across a variety of views unless faces are presented upside-down. Whether this face inversion effect (FIE) results from qualitative (distinct mechanisms) or quantitative processing differences (a matter of degree within common mechanisms) between upright and inverted faces has been intensely debated. Studies have focused on preferential responses to faces in face-specific brain areas, although face recognition also involves nonpreferential responses in non-face-specific brain areas. By using dynamic causal modeling with Bayesian model selection, here we show that dissociable cortical pathways are responsible for qualitative and quantitative mechanisms in the FIE in the distributed network for face recognition. When faces were upright, the early visual cortex (VC) and occipital and fusiform face areas (OFA, FFA) suppressed couplings to the lateral occipital cortex (LO), a primary locus of object processing. In contrast, they did not inhibit the LO when faces were inverted but increased couplings to the intraparietal sulcus, which has been associated with visual working memory. Furthermore, we found that upright and inverted face processing together involved the face network consisting of the VC, OFA, FFA, and inferior frontal gyrus. Specifically, modulatory connectivity within the common pathways (VC-OFA), implicated in the parts-based processing of faces, strongly correlated with behavioral FIE performance. The orientation-dependent dynamic reorganization of effective connectivity indicates that the FIE is mediated by both qualitative and quantitative differences in upright and inverted face processing, helping to resolve a central debate over the mechanisms of the FIE.


PubMed | University of Fukui, Graduate University for Advanced Studies, Brain Activity Imaging Center and Osaka City University
Type: | Journal: Neuropsychologia | Year: 2016

Visual clues as to the physical substance of manufactured objects can be misleading. For example, a plastic ring can appear to be made of gold. However, we can avoid misidentifying an objects substance by comparing visual and tactile information. As compared to the spatial properties of an object (e.g., orientation), however, little information regarding physical object properties (material properties) is shared between vision and touch. How can such different kinds of information be compared in the brain? One possibility is that the visuo-tactile comparison of material information is mediated by associations that are previously learned between the two modalities. Previous studies suggest that a cortical network involving the medial temporal lobe and precuneus plays a critical role in the retrieval of information from long-term memory. Here, we used functional magnetic resonance imaging (fMRI) to test whether these brain regions are involved in the visuo-tactile comparison of material properties. The stimuli consisted of surfaces in which an oriented plastic bar was placed on a background texture. Twenty-two healthy participants determined whether the orientations of visually- and tactually-presented bar stimuli were congruent in the orientation conditions, and whether visually- and tactually-presented background textures were congruent in the texture conditions. The texture conditions revealed greater activation of the fusiform gyrus, medial temporal lobe and lateral prefrontal cortex compared with the orientation conditions. In the texture conditions, the precuneus showed greater response to incongruent stimuli than to congruent stimuli. This incongruency effect was greater for the texture conditions than for the orientation conditions. These results suggest that the precuneus is involved in detecting incongruency between tactile and visual texture information in concert with the medial temporal lobe, which is tightly linked with long-term memory.


Mizokami Y.,Oita University | Terao T.,Oita University | Hatano K.,Oita University | Hoaki N.,Oita University | And 8 more authors.
Frontiers in Human Neuroscience | Year: 2014

Several studies have investigated neural correlates of aesthetic appreciation for paintings but to date the findings have been heterogeneous. This heterogeneity may be attributed to previous studies' measurement of aesthetic appreciation of not only the beauty of paintings but also the beauty of motifs of the paintings. In order to better elucidate the beauty of paintings, it seems necessary to compare aesthetic appreciation of paintings and photographic analogs which included corresponding real images. We prepared for famous painters' pictures and their photographic analogs which were set up to resemble each painting in order to investigate the hypothesis that there exist specific neural correlates associated with the aesthetic appreciation for paintings. Forty-four subjects participated in functional magnetic resonance study which required comparisons of aesthetic appreciation of paintings of still life and landscape versus photographic analogs including corresponding real images of still life and landscape. Bilateral cuneus and the left lingual gyrus were activated in the comparison of aesthetic appreciation of paintings versus photographic analogs. In conclusion, the present findings suggest a possibility of the existence of specific neural correlates associated with the aesthetic appreciation for paintings and that bilateral cuneus and the left lingual gyrus may be involved. © 2014 Mizokami, Terao, Hatano, Hoaki, Kohno, Araki, Kodama, Makino, Izumi, Shimomura, Fujiki and Kochiyama.


PubMed | Kyoto University, Brain Activity Imaging Center and Shiga University
Type: | Journal: Human brain mapping | Year: 2016

Debate continues over whether the inferior occipital gyrus (IOG) or the fusiform gyrus (FG) represents the first stage of face processing and what role these brain regions play. We investigated this issue by combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in normal adults. Participants passively observed upright and inverted faces and houses. First, we identified the IOG and FG as face-specific regions using fMRI. We applied beamforming source reconstruction and time-frequency analysis to MEG source signals to reveal the time course of gamma-band activations in these regions. The results revealed that the right IOG showed higher gamma-band activation in response to upright faces than to upright houses at 100 ms from the stimulus onset. Subsequently, the right FG showed greater gamma-band response to upright faces versus upright houses at around 170 ms. The gamma-band activation in the right IOG and right FG was larger in response to inverted faces than to upright faces at the later time window. These results suggest that (1) the gamma-band activities occurs rapidly first in the IOG and next in the FG and (2) the gamma-band activity in the right IOG at later time stages is involved in configuration processing for faces. Hum Brain Mapp, 2016. 2016 Wiley Periodicals, Inc.


PubMed | Tokyo Metroplitan University, Okazaki National Research Institute and Brain Activity Imaging Center
Type: | Journal: Scientific reports | Year: 2016

Positive social interactions contribute to the sense that ones life has meaning. Enjoyment of feelings associated through social interaction motivates humans to build social connections according to their personal preferences. Therefore, we hypothesized that social interaction itself activates the reward system in a manner that depends upon individual interaction preferences. To test this hypothesis, we conducted a functional magnetic resonance imaging (fMRI) study in which 38 participants played a virtual ball-toss game in which the number of ball tosses to the participant was either similar to (normal-frequency condition) or higher than (high-frequency condition) the number of tosses to the other players. Participants reported greater-than-anticipated enjoyment during the high-frequency condition, suggesting that receiving a social reward led to unexpected positive feelings. Consistent with this, the high-frequency condition produced stronger activation in the ventral striatum, which is part of the reward system, and the precuneus, representing positive self-image, which might be translated to social reward. Furthermore, ventral striatal activation covaried with individual participants preference for interactions with others. These findings suggest that an elevated frequency of social interaction is represented as a social reward, which might motivate individuals to promote social interaction in a manner that is modulated by personal preference.

Loading Brain Activity Imaging Center collaborators
Loading Brain Activity Imaging Center collaborators