Time filter

Source Type

Cambridge, United Kingdom

Geerts N.,FOM Institute for Atomic and Molecular Physics | Jahn S.,University of Cambridge | Eiser E.,BP Institute
Journal of Physics Condensed Matter | Year: 2010

We present a confocal microscopy study of the quasi-two-dimensional crystallization of a binary mixture of spherical colloids coated with long DNA strands. Our experiments show that in the crystalline phase the two colloidal species are completely demixed. Analysis of the lattice spacings in the two types of colloidal crystal shows that the diameters of the two species of colloids differ by 10%. We argue that the demixing in the crystalline phase is due to size segregation during crystallization. This phenomenon had been predicted in several theoretical studies. To our knowledge, the present study provides the first 'real-space' experimental confirmation of this effect. © 2010 IOP Publishing Ltd. Source

Georgiadis A.,Surrey Materials Institute | Routh A.F.,BP Institute | Murray M.W.,Akzo Nobel | Keddie J.L.,Surrey Materials Institute
Soft Matter | Year: 2011

Polymer coatings with periodic topographic patterns, repeating over millimetre length scales, are created from lateral flows in an aqueous dispersion of colloidal particles. The flow is driven by differences in evaporation rate across the wet film surface created by IR radiative heating through a shadow mask. This new process, which we call IR radiation-assisted evaporative lithography (IRAEL), combines IR particle sintering with the concept of evaporative lithography. We show that the height of the surface features increases with an increase in several key parameters: the initial thickness of the film, the volume fraction of particles, and the pitch of the pattern. The results are interpreted by using models of geometry and particle transport. The patterned coatings can function as "paintable" microlens arrays, applicable to nearly any surface. Compared with existing methods for creating textured coatings, IRAEL is simpler, inexpensive, able to create a wide variety of bespoke surfaces, and applicable to nearly any substrate without prior preparation. © The Royal Society of Chemistry 2011. Source

Boait F.C.,Bullard Laboratories | White N.J.,Bullard Laboratories | Bickle M.J.,Bullard Laboratories | Chadwick R.A.,British Geological Survey | And 3 more authors.
Journal of Geophysical Research: Solid Earth | Year: 2012

Time-lapse, three-dimensional (3D) seismic surveys have imaged an accumulation of injected CO2 adjacent to the Sleipner field in the North Sea basin. The changing pattern of reflectivity suggests that CO 2 accumulates within a series of interbedded sandstones and mudstones beneath a thick caprock of mudstone. Nine reflective horizons within the reservoir have been mapped on six surveys acquired between 1999 and 2008. These horizons have roughly elliptical planforms with eccentricities ranging between two and four. In the top half of the reservoir, horizon areas grow linearly with time. In the bottom half, horizon areas initially grow linearly for about eight years and then progressively shrink. The central portions of deeper reflective horizons dim with time. Amplitude analysis of horizons above, within, and below the reservoir show that this dimming is not solely caused by acoustic attenuation. Instead, it is partly attributable to CO2 migration and/or CO2 dissemination, which reduce the impedance contrast between sandstone and mudstone layers. Growth characteristics and permeability constraints suggest that each horizon grows by lateral spreading of a gravity current. This model is corroborated by the temporal pattern of horizon velocity pushdown beneath the reservoir. Horizon shrinkage may occur if the distal edge of a CO2-filled layer penetrates the overlying mudstone, if the buoyant plume draws CO2 upward, or if the effective permeability of deeper mudstone layers increases once interstitial brine has been expelled. Topographic control is evident at later times and produces elliptical planforms, especially toward the top of the reservoir. Our results show that quantitative mapping and analysis of time-lapse seismic surveys yield fluid dynamical insights which are testable, shedding light on the general problem of CO 2 sequestration. Copyright 2012 by the American Geophysical Union. Source

Holness M.B.,University of Cambridge | Richardson C.,BP Institute | Andersen J.C.,University of Exeter
Lithos | Year: 2013

The Skaergaard Intrusion of East Greenland is cut by several generations of dykes, the earliest of which is thought to have intruded shortly after solidification of the Skaergaard. Two ~6m wide doleritic dykes from the earliest generation are exposed in the campsite area near Homestead Bay of the Skaergaard Peninsula. One of the dykes (the Campsite Dyke) locally contains abundant xenoliths of troctolitic cumulate. The other (the Plagioclase-phyric Dyke) contains abundant large plagioclase phenocrysts. Cross-cutting relationships between the two dykes are not exposed. The median clinopyroxene-plagioclase-plagioclase dihedral angle, Θcpp, in the Campsite Dyke is 88-89.5°, whereas that of the Plagioclase-phyric Dyke is 79°. Using an empirical relationship between Θcpp and the duration of crystallisation derived from dolerite sills, the observed Θcpp suggests that the Campsite Dyke is the older of the two, intruding the Skaergaard when it had cooled to 920-970°C. The Plagioclase-phyric Dyke intruded later, once the Skaergaard had cooled below 670°C. The troctolitic xenoliths divide into two separate groups. Type A xenoliths have microstructures similar to those of the Skaergaard Layered Series although mineral compositions are generally more primitive than those of the exposed cumulates - this type of xenolith is likely to have been derived from either deeper levels in the Skaergaard Intrusion or from a closely-related underlying magma chamber. One Type A xenolith has mineral compositions and Θcpp consistent with an origin in LZb of the Layered Series - this xenolith contains partially inverted pigeonite, suggesting that inversion of low-Ca pyroxene in the lower part of the Layered Series took place after the intrusion had completely solidified. Type B xenoliths are characterized by plagioclase containing large and abundant melt inclusions. Comparison with the microstructures of glassy crystalline nodules from Iceland points to a multi-stage cooling history for Type B xenoliths, consistent with step-wise entrainment of partially crystallised material from a deep chamber. Type B xenoliths are very unlikely to have been derived from deeper levels in the Skaergaard chamber. © 2013 The Authors. Source

Hartley R.A.,Bullard Laboratories | Roberts G.G.,Bullard Laboratories | White N.,Bullard Laboratories | Richardson C.,BP Institute
Nature Geoscience | Year: 2011

Sedimentary basins in the North Atlantic Ocean preserve a record of intermittent uplift during Cenozoic times1. These variations in elevation are thought to result from temperature changes within the underlying Icelandic mantle plume2. When parts of the European continental shelf were episodically lifted above sea level, new landscapes were carved by erosion, but these landscapes then subsided and were buried beneath marine sediments3. Here, we use three-dimensional seismic data to reconstruct one of these ancient landscapes that formed off the northwest coast of Europe during the Palaeocene-Eocene Thermal Maximum. We identify a drainage network within the landscape and, by modelling the profiles of individual rivers within this network, we reconstruct the history of surface uplift. We show that the landscape was lifted above sea level in a series of three discrete steps of 200-400 m each. After about 1 million years of subaerial exposure, this landscape was reburied. We use the magnitude and duration of uplift to constrain the temperature and velocity of a mantle-plume anomaly that drove landscape formation. We conclude that pulses of hot, chemically depleted, mantle material spread out radially beneath the lithospheric plate at velocities of ∼35 cm yr-1. © 2011 Macmillan Publishers Limited. All rights reserved. Source

Discover hidden collaborations