Manchester, NH, United States
Manchester, NH, United States

Time filter

Source Type

Kobrin K.L.,Boston Therapeutics | Moody O.,Research Service VA Boston Healthcare System Boston | Arena D.T.,Research Service VA Boston Healthcare System Boston | Moore C.F.,Boston Therapeutics | And 2 more authors.
Addiction Biology | Year: 2015

Contexts associated with opioid reward trigger craving and relapse in opioid addiction. Effects of reward-context associative learning on nucleus accumbens (NAc) dendritic morphology were studied using morphine conditioned place preference (CPP). Morphine-conditioned mice received saline and morphine 10mg/kg subcutaneous (s.c.) on alternate days. Saline-conditioned mice received saline s.c. each day. Morphine-conditioned and saline-conditioned groups received injections immediately before each of eight daily conditioning sessions. Morphine homecage controls had no CPP training, but received saline and morphine in the homecage concomitantly with the morphine-conditioned group. Morphine conditioning produced greater place preference than saline conditioning. Mice were sacrificed 1 day after CPP expression. Dendritic changes were studied using Golgi-Cox staining and digital tracing of NAc core and shell neurons. In the NAc core, morphine homecage administration increased spine density, while morphine conditioning increased dendritic complexity, as defined by increased dendritic count, length and intersections. Place preference positively correlated with dendritic length and intersections in the NAc core. The core may mediate reward consolidation and determine how context-related signals from the shell lead to motor behavior. The combination of drug and conditioning in the morphine-conditioned group produced unique morphological effects different from the effects of drug or conditioning procedures by themselves. An additional study found no differences in neuron morphology between saline-conditioned mice, trained as described earlier, and mice that were not conditioned, but received saline in the homecage. The unique effect of morphine reward learning on NAc core dendrites reflects a brain substrate that could be targeted for therapeutic intervention in addiction. © 2015 Society for the Study of Addiction.


Huang Y.,University of Arkansas for Medical Sciences | Simms A.E.,University of Arkansas for Medical Sciences | Mazur A.,University of Arkansas for Medical Sciences | Wang S.,University of Arkansas for Medical Sciences | And 4 more authors.
Clinical and Experimental Metastasis | Year: 2011

Fibroblast activation protein-α (FAP) is a cell surface, serine protease of the post-prolyl peptidase family that is expressed in human breast cancer but not in normal tissues. Previously, we showed that FAP expression increased tumor growth rates in a mouse model of human breast cancer. Here the role of the proteolytic activities of FAP in promoting tumor growth, matrix degradation and invasion was investigated. Mammary fat pads of female SCID mice were inoculated with breast cancer cells that express FAP and the mice treated with normal saline or Val-boroPro (talabostat); Glu-boroPro (PT-630); or 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine (LAF-237) that inhibit prolyl peptidases. Other mice were injected with breast cancer cells expressing a catalytically inactive mutant of FAP and did not receive inhibitor treatment. PT-630 and LAF-237 did not slow growth of tumors produced by any of the three cell lines expressing FAP. Talabostat slightly decreased the growth rates of the FAP-expressing tumors but because PT-630 and LAF-237 did not, the growth retardation was likely not related to the inhibition of FAP or the related post-prolyl peptidase dipeptidyl peptidase IV. Breast cancer cells expressing a catalytically inactive mutant of FAP (FAPS624A) also produced tumors that grew rapidly. In vitro studies revealed that cells expressing wild type FAP or FAPS624A degrade extracellular matrix (ECM) more extensively, accumulate higher levels of matrix metalloproteinase-9 (MMP-9) in conditioned medium, are more invasive in type I collagen gels, and have altered signaling compared to control transfectants that do not express FAP and form slow growing tumors. We conclude that the proteolytic activity of FAP participates in matrix degradation, but other functions of the protein stimulate increased tumor growth. © 2011 Springer Science+Business Media B.V.


Claria J.,Boston Therapeutics | Nguyen B.T.,Harvard University | Madenci A.L.,Harvard University | Keith Ozaki C.,Harvard University | Serhan C.N.,Boston Therapeutics
American Journal of Physiology - Cell Physiology | Year: 2013

Adipose tissue is a heterogeneous organ with remarkable variations in fat cell metabolism depending on the anatomical location. However, the pattern and distribution of bioactive lipid mediators between different fat depots and their relationships in complex diseases have not been investigated. Using LC-MS/MS-based metabolo-lipidomics, here we report that human subcutaneous (SC) adipose tissues possess a range of specialized proresolving mediators (SPM) including resolvin (Rv) D1, RvD2, protectin (PD) 1, lipoxin (LX) A4, and the monohydroxy biosynthetic pathway markers of RvD1 and PD1 (17-HDHA), RvE1 (18-HEPE), and maresin 1 (14-HDHA). The "classic" eicosanoids prostaglandin (PG) E2, PGD2, PGF2α, leukotriene (LT) B4, 5-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, and 15-HETE were also identified in SC fat. SC fat from patients with peripheral vascular disease (PVD) exhibited a marked deficit in PD1 and 17-HDHA levels. Compared with SC, perivascular adipose tissue displayed higher SPM levels, suggesting an enhanced resolution capacity in this fat depot. In addition, augmented levels of eicosanoids and SPM were observed in SC fat surrounding foot wounds. Notably, the profile of SC PGF2α differed significantly when patients were grouped by body mass index (BMI). In the case of peri-wound SC fat, BMI negatively correlated with PGE2. In this tissue, proresolving mediators RvD2 and LXA4 were identified in lower levels than the proinflammatory LTB4. Collectively, these findings demonstrate a diverse distribution of bioactive lipid mediators depending on the localization of human fat depots and uncover a specific SPM pattern closely associated with PVD. © 2013 the American Physiological Society.


Yuan K.,University of Sichuan | Yuan K.,University of North Dakota | Huang C.,University of Sichuan | Fox J.,University of North Dakota | And 6 more authors.
Journal of Cell Science | Year: 2012

Intracellular bacteria have been shown to cause autophagy, which impacts infectious outcomes, whereas extracellular bacteria have not been reported to activate autophagy. Here, we demonstrate that Pseudomonas aeruginosa, a Gram-negative extracellular bacterium, activates autophagy with considerably increased LC3 punctation in both an alveolar macrophage cell line (MH-S) and primary alveolar macrophages. Using the LC3 Gly120 mutant, we successfully demonstrated a hallmark of autophagy, conjugation of LC3 to phosphatidylethanolamine (PE). The accumulation of typical autophagosomes with double membranes was identified morphologically by transmission electron microscopy (TEM). Furthermore, the increase of PE-conjugated LC3 was indeed induced by infection rather than inhibition of lysosome degradation. P. aeruginosa induced autophagy through the classical beclin-1-Atg7-Atg5 pathway as determined by specific siRNA analysis. Rapamycin and IFN-γ (autophagy inducers) augmented bacterial clearance, whereas beclin-1 and Atg5 knockdown reduced intracellular bacteria. Thus, P. aeruginosa-induced autophagy represents a host protective mechanism, providing new insight into the pathogenesis of this infection. © 2012.


Relias V.,Boston Therapeutics | Saif M.W.,Boston Therapeutics
Journal of the Pancreas | Year: 2014

Ampullary adenocarcinomas have unique biologic and clinical features that result in its improved prognosis versus adenocarcinomas that arise from the distal bile ducts and pancreas. However the histological differentiation and identification of these tumors is not easily accomplished. Two abstracts at this year's ASCO Annual Meeting describe attempts to identify unique methods for distinguishing these tumors. Abstract 4141 described a 92 gene RT-PCR assay that was used for molecular classification of patients with ampullary adenocarcinomas while abstract e15175 looked at mutational status of K-ras in patients with these tumors. The results of their abstracts will be discussed.


Brennan G.T.,University of Texas Southwestern Medical Center | Relias V.,Boston Therapeutics | Wasif Saif M.,Boston Therapeutics
Journal of the Pancreas | Year: 2013

Germline mutations in BRCA genes have been associated with pancreatic cancer. Laboratory and clinical data suggest that patients with BRCA mutations may be more responsive to therapy consisting of conventional chemotherapy with a poly(ADP-ribose) polymerase inhibitor (PARPi). The most recent data from the 2013 American Society of Clinical Oncology (ASCO) Annual Meeting will be reviewed.


Kesselheim A.S.,Boston Therapeutics | Shiu N.,Boston Therapeutics
Clinical Pharmacology and Therapeutics | Year: 2014

Patents are commonly granted for the use of biomarkers in making medical decisions. However, the US Supreme Court recently changed the landscape with a unanimous decision that patents cannot cover discoveries of basic correlations in nature, such as those relating biomarkers to particular clinical outcomes. Subsequent court decisions have overturned patents on genetic and other diagnostic methods involving purely mental processes, but processes integrating biomarkers in practical clinical steps can still earn intellectual property protections.


Dalli J.,Boston Therapeutics | Chiang N.,Boston Therapeutics | Serhan C.N.,Boston Therapeutics
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

Upon infection and inflammation, tissue repair and regeneration are essential in reestablishing function. Here we identified potent molecules present in self-limited infectious murine exudates, regenerating planaria, and human milk as well as macrophages that stimulate tissue regeneration in planaria and are proresolving. Characterization of their physical properties and isotope tracking indicated that the bioactive structures contained docosahexaenoic acid and sulfido-conjugate (SC) of triene double bonds that proved to be 13-glutathionyl, 14-hydroxy-docosahexaenoic acid (SCI) and 13-cysteinylglycinyl, 14-hydroxy-docosahexaenoic acid (SCII). These molecules rescued Escherichia coli infectionmediated delay in tissue regeneration in planaria, improving regeneration intervals from ∼4.2 to ∼3.7 d. Administration of SCs protected mice from second-organ reflow injury, promoting repair via limiting neutrophil infiltration, up-regulating Ki67, and Roof plate-specific spondin 3. At nanomolar potencies these conjugates also resolved E. coli infections by limiting neutrophil infiltration and stimulating bacterial phagocytosis and clearance as well as efferocytosis of apoptotic cells. Together, these findings identify previously undescribed conserved chemical signals and pathways in planaria, mouse, and human tissues that enhance host responses to contain infections, stimulate resolution of inflammation, and promote the restoration of function.


Patent
Boston Therapeutics | Date: 2014-03-14

The present disclosure relates to the use of polymers to coat bitter-tasting active pharmaceutical ingredients in a manner that masks the bitter taste of these compounds. Taste masked pharmaceutical formulations in which the particles of pharmaceutically active ingredients are coated with polymers or ion exchange resins are disclosed. The formulations provide taste masked pharmaceutical formulations in which the rapid disintegration of tablets is preserved. A method for preparing such coated particles in a fluidized bed coating process is disclosed. The polymer coating may include a combination of low molecular and high molecular weight water in-soluble polymers, plasticizer and fillers, which provides for a chewable dosage form having a pleasing taste thereby improving patient compliance.


Loading Boston Therapeutics collaborators
Loading Boston Therapeutics collaborators