Jakarta, India
Jakarta, India

Time filter

Source Type

Runting R.K.,University of Queensland | Meijaard E.,Borneo Futures Project | Abram N.K.,University of Queensland | Wells J.A.,Center for International Forestry Research | And 8 more authors.
Nature Communications | Year: 2015

Balancing economic development with international commitments to protect biodiversity is a global challenge. Achieving this balance requires an understanding of the possible consequences of alternative future scenarios for a range of stakeholders. We employ an integrated economic and environmental planning approach to evaluate four alternative futures for the mega-diverse island of Borneo. We show what could be achieved if the three national jurisdictions of Borneo coordinate efforts to achieve their public policy targets and allow a partial reallocation of planned land uses. We reveal the potential for Borneo to simultaneously retain ~50% of its land as forests, protect adequate habitat for the Bornean orangutan (Pongo pygmaeus) and Bornean elephant (Elephas maximus borneensis), and achieve an opportunity cost saving of over US$43 billion. Such coordination would depend on enhanced information sharing and reforms to land-use planning, which could be supported by the increasingly international nature of economies and conservation efforts. © 2015 Macmillan Publishers Limited. All rights reserved.


De Bruyn M.,Bangor University | Stelbrink B.,Humboldt University of Berlin | Morley R.J.,Royal Holloway, University of London | Morley R.J.,Palynova Ltd | And 15 more authors.
Systematic Biology | Year: 2014

Tropical Southeast (SE) Asia harbors extraordinary species richness and in its entirety comprises four of the Earth's 34 biodiversity hotspots. Here, we examine the assembly of the SE Asian biota through time and space. We conduct meta-analyses of geological, climatic, and biological (including 61 phylogenetic) data sets to test which areas have been the sources of long-term biological diversity in SE Asia, particularly in the pre-Miocene, Miocene, and Plio-Pleistocene, and whether the respective biota have been dominated by in situ diversification, immigration and/or emigration, or equilibrium dynamics. We identify Borneo and Indochina, in particular, as major "evolutionary hotspots" for a diverse range of fauna and flora. Although most of the region's biodiversity is a result of both the accumulation of immigrants and in situ diversification, within-area diversification and subsequent emigration have been the predominant signals characterizing Indochina and Borneo's biota since at least the early Miocene. In contrast, colonization events are comparatively rare from younger volcanically active emergent islands such as Java, which show increased levels of immigration events. Few dispersal events were observed across the major biogeographic barrier of Wallace's Line. Accelerated efforts to conserve Borneo's flora and fauna in particular, currently housing the highest levels of SE Asian plant and mammal species richness, are critically required. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.


Meijaard E.,Borneo Futures Project | Meijaard E.,University of Queensland | Meijaard E.,Center for International Forestry Research | Abram N.K.,Borneo Futures Project | And 10 more authors.
PLoS ONE | Year: 2013

We ascertained villagers' perceptions about the importance of forests for their livelihoods and health through 1,837 reliably answered interviews of mostly male respondents from 185 villages in Indonesian and Malaysian Borneo. Variation in these perceptions related to several environmental and social variables, as shown in classification and regression analyses. Overall patterns indicated that forest use and cultural values are highest among people on Borneo who live close to remaining forest, and especially among older Christian residents. Support for forest clearing depended strongly on the scale at which deforestation occurs. Deforestation for small-scale agriculture was generally considered to be positive because it directly benefits people's welfare. Large-scale deforestation (e.g., for industrial oil palm or acacia plantations), on the other hand, appeared to be more context-dependent, with most respondents considering it to have overall negative impacts on them, but with people in some areas considering the benefits to outweigh the costs. The interviews indicated high awareness of negative environmental impacts of deforestation, with high levels of concern over higher temperatures, air pollution and loss of clean water sources. Our study is unique in its geographic and trans-national scale. Our findings enable the development of maps of forest use and perceptions that could inform land use planning at a range of scales. Incorporating perspectives such as these could significantly reduce conflict over forest resources and ultimately result in more equitable development processes. © 2013 Meijaard et al.


Davis J.T.,Queensland University of Technology | Mengersen K.,Queensland University of Technology | Abram N.K.,University of Kent | Ancrenaz M.,HUTAN Kinabatangan Orang utan Conservation Programme | And 4 more authors.
PLoS ONE | Year: 2013

We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents' active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI) and between 26,361 and 41,688 for non-conflict reasons (95% CI). These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed. © 2013 Davis et al.


Law E.A.,University of Queensland | Meijaard E.,Borneo Futures Project | Meijaard E.,University of Brunei Darussalam | Bryan B.A.,CSIRO | And 3 more authors.
Biological Conservation | Year: 2015

Land sparing and land sharing are contrasting strategies often aimed at improving both agricultural production and biodiversity conservation in multifunctional landscapes. These strategies are embodied in land management policies at local to international scales, commonly in conjunction with other land-use policies. Evaluation of these strategies at a landscape scale, for multiple ecosystem service benefits, and multiple elements of biodiversity has not previously been attempted. We simulated the effects of applying land sharing and land sparing strategies to the agricultural zones designated by four future land-use scenarios (reflecting both current land-use and prospective land-use plans) in the Ex-Mega Rice Project region of Central Kalimantan, Indonesia. We assessed impacts of each strategy on biodiversity, agricultural production, and other ecosystem service benefits at a landscape scale. We examined whether it was possible to achieve predetermined targets that reflect the aspirations and entitlements of diverse stakeholder groups. We found that the prospective land-use plans for the region would deliver considerably more benefit than the current land-use allocations, and while not all targets can be achieved, additional progress could be made with reasonable and realistic levels of land sharing or sparing. We found that species and forest types sensitive to agricultural disturbance could benefit most if land in agricultural zones was spared and prioritised for conservation. Conversely, land sharing strategies favoured the more widespread and common species, particularly if the area of wildlife-friendly agriculture is increased. However, the effectiveness of agricultural-focused land management strategies is inherently limited by the extent of agricultural zones. While agricultural land sparing and sharing strategies can deliver some gains in target achievement for multiple ecosystem services, we find that they have a limited effect over the benefits achieved by implementing better land-use allocation from the outset. © 2015 The Authors.


Gaveau D.L.A.,Center for International Forestry Research | Sloan S.,James Cook University | Molidena E.,Center for International Forestry Research | Yaen H.,Center for International Forestry Research | And 9 more authors.
PLoS ONE | Year: 2014

The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km-2, and the lowest density in Brunei, at 0.18 km km-2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo. © 2014 Gaveau et al.


Liedigk R.,Leibniz Institute for Primate Research | Kolleck J.,Leibniz Institute for Primate Research | Boker K.O.,Leibniz Institute for Primate Research | Meijaard E.,Borneo Futures Project | And 11 more authors.
BMC Genomics | Year: 2015

Background: Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon's range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing. Results: Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma. Conclusions: Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies. © Liedigk et al.; licensee BioMed Central.


Ancrenaz M.,HUTAN Kinabatangan Orangutan Conservation Programme | Sollmann R.,North Carolina State University | Sollmann R.,Leibniz Institute for Zoo and Wildlife Research | Meijaard E.,Borneo Futures Project | And 33 more authors.
Scientific Reports | Year: 2014

The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated.


Di Marco M.,University of Rome La Sapienza | Boitani L.,University of Rome La Sapienza | Mallon D.,Manchester Metropolitan University | Hoffmann M.,United Nations Environment Programme World Conservation Monitoring Center | And 8 more authors.
Conservation Biology | Year: 2014

Assessing temporal changes in species extinction risk is necessary for measuring conservation success or failure and for directing conservation resources toward species or regions that would benefit most. Yet, there is no long-term picture of genuine change that allows one to associate species extinction risk trends with drivers of change or conservation actions. Through a review of 40 years of IUCN-related literature sources on species conservation status (e.g., action plans, red-data books), we assigned retrospective red-list categories to the world's carnivores and ungulates (2 groups with relatively long generation times) to examine how their extinction risk has changed since the 1970s. We then aggregated species' categories to calculate a global trend in their extinction risk over time. A decline in the conservation status of carnivores and ungulates was underway 40 years ago and has since accelerated. One quarter of all species (n = 498) moved one or more categories closer to extinction globally, while almost half of the species moved closer to extinction in Southeast Asia. The conservation status of some species improved (toward less threatened categories), but for each species that improved in status 8 deteriorated. The status of large-bodied species, particularly those above 100 kg (including many iconic taxa), deteriorated significantly more than small-bodied species (below 10 kg). The trends we found are likely related to geopolitical events (such as the collapse of Soviet Union), international regulations (such as CITES), shifting cultural values, and natural resource exploitation (e.g., in Southeast Asia). Retrospective assessments of global species extinction risk reduce the risk of a shifting baseline syndrome, which can affect decisions on the desirable conservation status of species. Such assessments can help conservationists identify which conservation policies and strategies are or are not helping safeguard biodiversity and thus can improve future strategies. © 2014 Society for Conservation Biology.


PubMed | Borneo Futures Project, Km 10, National University of Malaysia, Kent State University and 3 more.
Type: | Journal: BMC genomics | Year: 2015

Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxons range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing.Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84Ma.Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.

Loading Borneo Futures Project collaborators
Loading Borneo Futures Project collaborators