Time filter

Source Type

Sapkota T.B.,International Maize and Wheat Improvement Center | Jat M.L.,International Maize and Wheat Improvement Center | Aryal J.P.,International Maize and Wheat Improvement Center | Jat R.K.,Borlaug Institute for South Asia | Khatri-Chhetri A.,International Water Management Institute
Journal of Integrative Agriculture | Year: 2015

Achieving sustainability of the cereal system in the Indo-Gangetic Plains (IGP) of India under progressive climate change and variability necessitates adoption of practices and technologies that increase food production, adaptation and mitigation in a sustainable way. This paper examines conservation agriculture (CA) from the perspective of: (i) increased yield and farm income, (ii) adaptation to heat and water stresses, and (iii) reduction in greenhouse gas (GHGs) emissions. The analyses and conclusions are based on the literature and evidences from a large number of on-station as well as farmers' field trials on CA in the cereal systems of IGP. Our analyses show that CA-based system substantially reduces the production cost (up to 23%) but produces equal or even higher than conventional system; thereby increasing economic profitability of production system. CA-based production systems also moderated the effect of high temperature (reduced canopy temperature by 1-4°C) and increased irrigation water productivity by 66-100% compared to traditional production systems thus well adapting to water and heat stress situations of IGP. Our continuous monitoring of soil flux of CO2, N2O and CH4 revealed that CA-based rice-wheat systems emit 10-15% less GHGs than conventional systems. This is the first time that CA and its components are synthesized and analyzed from food security-climate change nexus. From this holistic analysis, we suggest that wide-scale promotion of suitable CA practices by integrating into national agriculture development strategy is a way forward to address food security, climate change adaptation and mitigation challenges faced by present agriculture. © 2015 Chinese Academy of Agricultural Sciences.

Muthusamy V.,Indian Agricultural Research Institute | Hossain F.,Indian Agricultural Research Institute | Thirunavukkarasu N.,Indian Agricultural Research Institute | Choudhary M.,Indian Agricultural Research Institute | And 6 more authors.
PLoS ONE | Year: 2014

Development of vitamin A-rich cereals can help in alleviating the widespread problem of vitamin A deficiency. We report here significant enhancement of kernel β-carotene in elite maize genotypes through accelerated marker-assisted backcross breeding. A favourable allele (543 bp) of the β-carotene hydroxylase (crtRB1) gene was introgressed in the seven elite inbred parents, which were low (1.4 μg/g) in kernel β-carotene, by using a crtRB1-specific DNA marker for foreground selection. About 90% of the recurrent parent genome was recovered in the selected progenies within two backcross generations. Concentration of β-carotene among the crtRB1-introgressed inbreds varied from 8.6 to 17.5 μg/g - a maximum increase up to 12.6-fold over recurrent parent. The reconstituted hybrids developed from improved parental inbreds also showed enhanced kernel β-carotene as high as 21.7 μg/g, compared to 2.6 μg/g in the original hybrid. The reconstituted hybrids evaluated at two locations possessed similar grain yield to that of original hybrids. These β-carotene enriched high yielding hybrids can be effectively utilized in the maize biofortification programs across the globe. © 2014 Muthusamy et al.

Zunjare R.,Indian Agricultural Research Institute | Hossain F.,Indian Agricultural Research Institute | Muthusamy V.,Indian Agricultural Research Institute | Choudhary M.,Indian Agricultural Research Institute | And 6 more authors.
Indian Journal of Genetics and Plant Breeding | Year: 2015

A set of 21 popcorn hybrids were evaluated at multi-locations to study the effects of weevil (Sitophilus oryzae) infestation on popping quality traits. Wide genetic variation for percent popping expansion (PPE) and grain popping percentage (GPP) after weevil infestation were observed. PPE and GPP varied from 6.09-85.21% and 4.33-66.67%, across locations, respectively. The mean PPE was 52.90%, while same for GPP was 23.46%. Significant effects of environment and genotype x environment interactions were observed for both PPE and GPP. Strong positive correlation (r=0.89) across locations was recorded between PPE and GPP. Despite weevil infestation, popcorn hybrids viz., PH114 (PPE: 83.18%, GPP: 54.11%), PH110 (PPE: 69.27%, GPP: 33.11%), PH103 (PPE: 65.84%, GPP: 26.78%), PH112 (PPE: 64.91%, GPP: 29.22%) and PH109 (PPE: 64.48%, GPP: 29.00%) were identified as promising with desirable popping quality traits. Many of the popcorn hybrids possessed undesirable popping characteristics (12 hybrids with <60% PPE; 18 hybrids with <30% GPP) upon infestation. Despite having a common notion that popcorn genotypes are relatively resistant than other types of maize grain, many of the popcorn hybrids were highly susceptible to weevils leading to undesirable popping quality attributes. The study emphasizes the need for breeding weevil resistant popcorn genotypes possessing desirable popping quality attributes. © 2015, Indian Society of Genetics and Plant Breeding. All rights reserved.

Mallikarjuna M.G.,Indian Agricultural Research Institute | Thirunavukkarasu N.,Indian Agricultural Research Institute | Hossain F.,Indian Agricultural Research Institute | Bhat J.S.,Indian Agricultural Research Institute | And 11 more authors.
PLoS ONE | Year: 2015

Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ∼25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg-1; zinc: 5.41 to 30.85 mg kg-1; manganese: 3.30 to17.73 mg kg-1; copper: 0.53 to 5.48 mg kg-1) and grain yield (826.6 to 5413 kg ha-1). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield. Copyright: © 2015 Mallikarjuna et al.

Naresh R.K.,Sardar Vallabhbhai Patel University of Agriculture and Technology | Rathore R.S.,Uttar Pradesh Council of Agricultural Research | Dhaliwal S.S.,Punjab Agricultural University | Yadav R.B.,Sardar Vallabhbhai Patel University of Agriculture and Technology | And 5 more authors.
Paddy and Water Environment | Year: 2015

A 3-year field experiment was carried out with tillage crop establishment (TCE) and rice nourishment in north-western India to evaluate the effect of five crop establishment methods and seven fertility treatments on crop production, water productivity, profitability, and soil physical quality. Maximum panicle length (30.9 cm) was noted with F3 treatment and minimum (22.7 cm) with F0 treatment. Zinc application methods and timing had significantly effect on paddy yield. Maximum yield (5.22 t ha−1) was achieved in treatment F3 and minimum yield (2.65 t ha−1) was noted in F0 treatment. Results also revealed that root dry weight, root volume, and root length were recorded with higher values in F3 treatment and minimum in F0 treatment. TCE methods were recorded with higher values in raised beds system than T5 at all growth stages. Treatments T1 and T2 reduced the mean maximum soil temperature at transplanting zone depth by 3.6 and 2.7 °C compared to the T3. Paddy yield in T3 was always significantly less than in T5. On average, treatment T4 recorded about 13 % lower water use and 3.7 % higher water productivity compared to T5. Treatment T5 had higher bulk density. The cumulative infiltration for 498 min was about 2 times in treatment T1, 5 times in T3 and more than 8 times in T4 of the values in T5. Mean weight diameter of aggregates was higher in T4 followed by the T1 and lowest in T5. The study reveals that TCE methods T1 and T4 with F3 nourishment could be more viable options for rice crop in order to save input costs and enhance profitability. © 2015 The International Society of Paddy and Water Environment Engineering and Springer Japan

Discover hidden collaborations