Entity

Time filter

Source Type

Mutare, Zimbabwe

Ndagurwa H.G.T.,National University of Sciences and Technology | Ndagurwa H.G.T.,National University of Science and Technology | Dube J.S.,Lupane State University | Mlambo D.,Border Timbers Ltd
Austral Ecology | Year: 2015

Nutrient loss from litter plays an essential role in carbon and nutrient cycling in nutrient-constrained environments. However, the decomposition and nutrient dynamics of nutrient-rich mistletoe litter remains unknown in semi-arid savanna where productivity is nutrient limited. We studied the decomposition and nutrient dynamics (nitrogen: N, phosphorous; P, carbon: C) of litter of three mistletoe species, Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum and N-fixing Acacia karroo using the litter-bag method in a semi-arid savanna, southwest Zimbabwe. The temporal dynamics of the soil moisture content, microbial populations, and termite activity during decomposition were also assessed. Decay rates were slower for A. karroo litter (k=0.63), but faster for the high quality mistletoe litters (mean k-value=0.79), which supports the premise that mistletoes can substantially influence nutrient availability to other plants. Nitrogen loss was between 1.3 and 3 times greater in E. ngamicum litter than in the other species. The litter of the mistletoes also lost C and P faster than A. karroo litter. However, soil moisture content and bacterial and fungal colony numbers changed in an opposite direction to changes in the decomposition rate. Additionally, there was little evidence of termite activity during the decay of all the species litters. This suggests that other factors such as photodegradation could be important in litter decomposition in semi-arid savanna. In conclusion, the higher rate of decay and nutrient release of mistletoe than A. karroo litter indicate that mistletoes play an important role in carbon and nutrient fluxes in semi-arid savanna. © 2014 Ecological Society of Australia. Source


Ndagurwa H.G.T.,National University of Science and Technology | Mundy P.J.,National University of Science and Technology | Dube J.S.,Lupane State University | Mlambo D.,Border Timbers Ltd
Journal of Tropical Ecology | Year: 2012

In a range of systems, studies on mistletoe distribution on the host plant have documented a number of factors that affect their occurrence and spread (Aukema & Martinez del Rio 2002a, Bowie & Ward 2004, Overton 1996, Reid et al. 1995). These patterns can be determined by host specificity, environmental conditions, host plant characteristics (Martinez del Rio et al. 1995) and the movement patterns of dispersal agents (Aukema & Martinez del Rio 2002a, 2002b). In mistletoe plants, host choice can be considerably influenced by the advantages of interacting with relatively abundant hosts (Norton & Carpenter 1998, Norton & De Lange 1999). Besides the relative abundance of host species, characteristics such as branch size, age and height can have a strong effect on mistletoe attachment resulting in size-related mistletoe infection patterns (Overton 1994). Generally positive relationships between mistletoe infection and host size have been demonstrated worldwide (Donohue 1995, Martinez del Rio et al. 1996, Norton et al. 1997, Reid & Stafford Smith 2000) and they have been interpreted in terms of the preferences by dispersing birds to perch and feed in taller trees (Aukema & Martinez del Rio 2002a) and trees accumulating infections as they age (Overton 1994). Aukema & Martinez del Rio (2002a) reported more frequent perching in taller-than-average trees by the phainopepla (Phainopepla nitens), which is the principal disperser of the desert mistletoe Phoradendron californicum. Thus, visits by mistletoe-seed-dispersing birds, and therefore mistletoe seeds received, tend to increase with tree height (Aukema & Martinez del Rio 2002a). Using a simple metapopulation model, Overton (1994) predicted the frequency of parasitized trees to increase with host age. Therefore, assuming that size is a good proxy for age, large trees are likely to be more infected than smaller trees. Reid & Stafford Smith (2000), using experimentally disinfected trees, found that larger trees were disproportionately re-infected with mistletoes. This size-intensity relationship may be used to describe mistletoe infection patterns. However, several previous studies have shown size-intensity relationships to be weak (Aukema & Martinez del Rio 2002a, Donohue 1995, Overton 1994, Reid & Stafford Smith 2000). This indicates that other factors may be important in determining mistletoe infection intensity, including that already parasitized hosts of a specific height are more likely to receive seeds than non-parasitized hosts of the same height or dispersers are likely to be attracted to trees for reasons other than size (Aukema & Martinez del Rio 2002a). © 2012 Cambridge University Press. Source


Ndagurwa H.G.T.,National University of Science and Technology | Dube J.S.,Lupane State University | Mlambo D.,Border Timbers Ltd
Journal of Tropical Ecology | Year: 2013

This study investigated the effects of mistletoe infection on N cycling in a semi-arid savanna, south-west Zimbabwe. We established five plots (10 × 10 m) which each included three large canopy-dominant Acacia karroo trees infected by one of three mistletoes (Erianthemum ngamicum, Plicosepalus kalachariensis and Viscum verrucosum) and non-infected A. karroo trees. In each plot, we measured litterfall, litter quality (N, phenolics, tannins and lignin), soil nutrient concentrations and N transformations beneath tree canopies. Soil N, P and Ca were greatest beneath trees infected by P. kalachariensis than beneath non-infected trees. Litterfall and litter N returns were 1.5, 2 and 1.4 times more beneath A. karroo trees infected by E. ngamicum, P. kalachariensis and V. verrucosum, respectively. Mineral N increased with mistletoe infection but did not exceed 20%. Soil N transformations were greater beneath trees infected by E. ngamicum (> 40%), and lower beneath trees infected by P. kalachariensis (<50%) and V. verrucosum (<48%) than beneath non-infected A. karroo trees. Soil N transformations were negatively correlated with condensed tannins, lignin and lignin : N. We conclude that the improved N concentration can increase resource heterogeneity, which may alter the ecosystem structure and functioning in the semi-arid savanna. Copyright © 2013 Cambridge University Press. Source


Ndagurwa H.G.T.,National University of Science and Technology | Dube J.S.,Lupane State University | Mlambo D.,Border Timbers Ltd
Plant Ecology | Year: 2014

Parasitic plants are increasingly becoming the focus of research in many ecosystems. They have been shown to alter litterfall properties and decomposition rates in environments where they occur. Despite this recognition, the role of mistletoes in nutrient cycling in semi-arid savanna remains poorly understood. We investigated the litter input, element returns, and associated below-canopy soil nutrient concentrations of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) that parasitize Acacia karroo trees in a semi-arid savanna, southwest Zimbabwe. Element concentrations in mistletoe leaf litter were enriched relative to the host. Litterfall from mistletoes significantly increased overall litterfall by up to 173 %, with E. ngamicum and P. kalachariensis having greater litterfall than their host trees. Associated with these changes in litterfall was an increase in element returns and the below-canopy soil nutrient concentrations. The increase in nutrient returns was due to both the effect of enriched mistletoe litter and increased volumes of litterfall beneath host trees. Litterfall, element returns, and the below-canopy soil nutrient concentrations were significantly influenced by mistletoe density, with higher values at high mistletoe density. Overall, E. ngamicum and P. kalachariensis had greater influence on litterfall, element returns, and soil nutrient concentrations than V. verrucosum. These findings are consistent with current understanding of enhanced nutrient cycling in the presence of parasitic plants particularly in nutrient-poor ecosystems. We conclude that the introduction of nutrients and associated increase in resource heterogeneity play an important role in determining ecosystem structure and function in semi-arid savannas. © 2013 Springer Science+Business Media Dordrecht. Source


Ndagurwa H.G.T.,National University of Science and Technology | Dube J.S.,Lupane State University | Mlambo D.,Border Timbers Ltd | Mawanza M.,National University of Science and Technology
Plant and Soil | Year: 2014

Aims: The below-canopy soil moisture content and litter-layer arthropod abundance and diversity of Acacia karroo trees parasitized by each of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) and uninfected A. karroo trees were investigated in semi-arid savanna, southwest Zimbabwe.Results: The soils below the canopies of mistletoe-infected trees were significantly low in moisture content compared to those beneath uninfected A. karroo trees. Nevertheless, arthropod species diversity was greater by up to 34 % below the canopies of mistletoe-infected trees than beneath uninfected A. karroo trees, with greater abundances beneath trees infected by E. ngamicum and P. kalachariensis. In addition, the majority of the arthropod species associated with mistletoe-infected trees had litter as their dominant foraging substrate.Conclusions: Our findings show that mistletoes increase the abundance and diversity of litter-dwelling and –foraging arthropods due to increase in the quality and quantity of litterfall beneath mistletoe-infected trees. By altering the below-canopy arthropod communities and soil moisture content, mistletoes have potential to modify ecosystem processes such as decomposition, soil process rates, and nutrient cycling. Therefore, we suggest that the resulting increase in resource heterogeneity plays an important role in determining the structure and functioning of semi-arid savanna ecosystems. © 2014, Springer International Publishing Switzerland. Source

Discover hidden collaborations