Time filter

Source Type

Melott A.L.,University of Kansas | Thomas B.C.,Washburn University | Neuenswander B.,University of Kansas | Atri D.,Blue Marble Space Institute of Science Seattle
Journal of Geophysical Research: Atmospheres | Year: 2016

Solar energetic particles ionize the atmosphere, leading to production of nitrogen oxides. It has been suggested that some such events are visible as layers of nitrate in ice cores, yielding archives of energetic, high-fluence solar proton events (SPEs). This has been controversial, due to slowness of transport for these species down from the upper stratosphere; past numerical simulations based on an analytic calculation have shown very little ionization below the midstratosphere. These simulations suffer from deficiencies: they consider only soft SPEs and narrow energy ranges; spectral fits are poorly chosen; and with few exceptions secondary particles in air showers are ignored. Using improved simulations that follow development of the proton-induced air shower, we find consistency with recent experiments showing substantial excess ionization down to 5km. We compute nitrate available from the 23 February 1956 SPE, which had a high-fluence, hard-spectrum, and well-resolved associated nitrate peak in a Greenland ice core. For the first time, we find that this event can account for ice core data with timely (~2months) transport downward between 46km and the surface, thus indicating an archive of high-fluence, hard-spectrum SPEs covering the last several millennia. We discuss interpretations of this result, as well as the lack of a clearly defined nitrate spike associated with the soft-spectrum 3-4 August 1972 SPE. We suggest that hard-spectrum SPEs, especially in the 6months of polar winter, are detectable in ice cores and that more work needs to be done to investigate this. ©2016. American Geophysical Union.

Discover hidden collaborations