Entity

Time filter

Source Type

Kilcoole, Ireland

Gremillet D.,French National Center for Scientific Research | Gremillet D.,University of Cape Town | Welcker J.,Norwegian Polar Institute | Karnovsky N.J.,Pomona College | And 7 more authors.
Marine Ecology Progress Series | Year: 2012

Climate models predict a multi-degree warming of the North Atlantic in the 21st century. A research priority is to understand the effect of such changes upon marine organisms. With 40 to 80 million individuals, planktivorous little auks Alle alle are an essential component of pelagic food webs in this region that is potentially highly susceptible to climatic effects. Using an integrative study of their behaviour, physiology and fitness at 3 study sites, we evaluated the effect of ocean warming on little auks across the Greenland Sea in 2005 to 2007. Contrary to our hypothesis, the birds responded to a wide range of sea surface temperatures via plasticity of their foraging behaviour, allowing them to maintain their fitness levels. Predicted effects of climate change are significantly attenuated by such plasticity, confounding attempts to forecast future effects of climate change using envelope models. © Inter-Research 2012. Source


Jessopp M.J.,University College Cork | Cronin M.,University College Cork | Doyle T.K.,University College Cork | Wilson M.,University College Cork | And 3 more authors.
Marine Biology | Year: 2013

The distribution of Atlantic puffins (Fratercula arctica) from Skellig Michael, south-west Ireland, was investigated using geolocation loggers between the 2010 and 2011 breeding seasons. All tracked birds travelled rapidly west into the North Atlantic at the end of the breeding season in August, with the majority undertaking transatlantic trips from Ireland to the Newfoundland-Labrador shelf. The furthest distance from the colony reached by each bird was not influenced by body mass or sex and was achieved in approximately 20 days. By October, all birds had moved back to the mid Atlantic where they remained resident until returning to the breeding colony. The most parsimonious explanation for the rapid, directed long-distance migration is that birds exploit the seasonally high abundance of prey [e.g., fish species such as capelin (Mallotus villosus) and sandlance (Ammodytes spp.)] off the Canadian coast, which is also utilised by large populations of North American seabirds at this time. Once the availability of this short-term prey resource has diminished, the tracked puffins moved back towards the north-east Atlantic. A relationship between relative abundance of puffins and zooplankton was found in all winter months, but after correcting for spatial autocorrelation, was only significant in November and January. Nevertheless, these results suggest a potential switch in diet from mainly fish during the breeding and early post-breeding periods to zooplankton over the remaining winter period. This study suggests that puffins from south-west Ireland have a long-distance migration strategy that is rare in breeding puffins from the UK and identifies a key non-breeding destination for puffins from Ireland. This has implications for the susceptibility of different breeding populations to the effects of possible climatic or oceanographic change. © 2013 Springer-Verlag Berlin Heidelberg. Source


Tomankova I.,Queens University of Belfast | Boland H.,BirdWatch Ireland | Reid N.,Queens University of Belfast | Fox A.D.,University of Aarhus
Aquatic Conservation: Marine and Freshwater Ecosystems | Year: 2013

Lough Neagh and Lough Beg Special Protection Area (SPA, hereafter Lough Neagh) is an important non-estuarine site in Britain and Ireland for overwintering wildfowl. Multivariate analysis of the winter counts showed a state-shift in the waterbird community following winter 2000/2001, mostly due to rapid declines in abundance (46-57% declines in the mean mid-winter January counts between 1993-2000 and 2002-2009) of members of the diving duck guild (pochard Aythya ferina, tufted duck Aythya fuligula and goldeneye Bucephala clangula) and coot (Fulica atra), a submerged macrophyte feeder. Only pochard showed correlations between declines at Lough Neagh and those of overall species flyway population indices to suggest that global changes could contribute to declines at the site. However, indices from the Republic of Ireland showed no overall decline in the rest of Ireland. Tufted duck indices at the site were inversely related to indices in Great Britain. Lough Neagh goldeneye indices were positively correlated with indices in the Republic of Ireland and Great Britain, suggesting that short-stopping could contribute to declines at the site. Coot declines at Lough Neagh did not correlate with trends elsewhere, suggesting local factors involved in the decline. These analyses indicate that although there are potentially different explanations for the dramatic declines in these four waterbird species at this site, the simultaneous nature of the declines across two feeding guilds strongly suggest that local factors (such as loss of submerged macrophytes and benthic invertebrates) were involved. An assessment of the food supply, local disturbance and other factors at Lough Neagh is required to find an explanation for the observed adverse trends in wintering numbers of the affected species. This study highlights the potential of waterbird community structure to reflect the status of aquatic systems, but confirms the need to establish site-specific factors responsible for the observed changes in abundance of key waterbird species at a site. © 2012 John Wiley & Sons, Ltd. Source


Johnston A.,British Trust for Ornithology | Ausden M.,Royal Society for the Protection of Birds | Dodd A.M.,Royal Society for the Protection of Birds | Bradbury R.B.,Royal Society for the Protection of Birds | And 21 more authors.
Nature Climate Change | Year: 2013

The dynamic nature and diversity of species' responses to climate change poses significant difficulties for developing robust, long-term conservation strategies. One key question is whether existing protected area networks will remain effective in a changing climate. To test this, we developed statistical models that link climate to the abundance of internationally important bird populations in northwestern Europe. Spatial climate-abundance models were able to predict 56% of the variation in recent 30-year population trends. Using these models, future climate change resulting in 4.0C global warming was projected to cause declines of at least 25% for more than half of the internationally important populations considered. Nonetheless, most EU Special Protection Areas in the UK were projected to retain species in sufficient abundances to maintain their legal status, and generally sites that are important now were projected to be important in the future. The biological and legal resilience of this network of protected areas is derived from the capacity for turnover in the important species at each site as species' distributions and abundances alter in response to climate. Current protected areas are therefore predicted to remain important for future conservation in a changing climate. © 2013 Macmillan Publishers Limited. All rights reserved. Source


Donnelly A.,University of Wisconsin - Milwaukee | Donnelly A.,Trinity College Dublin | Crowe O.,BirdWatch Ireland | Regan E.,Waterford Institute of Technology | And 2 more authors.
International Journal of Biometeorology | Year: 2014

Citizen science is proving to be an effective tool in tracking the rapid pace at which our environment is changing over large geographic areas. It is becoming increasingly popular, in places such as North America and some European countries, to engage members of the general public and school pupils in the collection of scientific data to support long-term environmental monitoring. Participants in such schemes are generally volunteers and are referred to as citizen scientists. The Christmas bird count in the US is one of the worlds longest running citizen science projects whereby volunteers have been collecting data on birds on a specific day since 1900. Similar volunteer networks in Ireland have been in existence since the 1960s and were established to monitor the number and diversity of birds throughout the country. More recently, initiatives such as Greenwave (2006) and Nature Watch (2009) invite school children and members of the general public respectively, to record phenology data from a range of common species of plant, insect and bird. In addition, the Irish butterfly and bumblebee monitoring schemes engage volunteers to record data on sightings of these species. The primary purpose of all of these networks is to collect data by which to monitor changes in wildlife development and diversity, and in the case of Greenwave to involve children in hands-on, inquiry-based science. Together these various networks help raise awareness of key environmental issues, such as climate change and loss of biodiversity, while at the same time promote development of scientific skills among the general population. In addition, they provide valuable scientific data by which to track environmental change. Here we examine the role of citizen science in monitoring biodiversity in Ireland and conclude that some of the data collected in these networks can be used to fulfil Ireland's statutory obligations for nature conservation. In addition, a bee thought previously to be extinct has been rediscovered and a range expansion of a different bee has been confirmed. However, it also became apparent that some of the networks play more of an educational than a scientific role. Furthermore, we draw on experience from a range of citizen science projects to make recommendations on how best to establish new citizen science projects in Ireland and strengthen existing ones. © 2013 ISB. Source

Discover hidden collaborations