Time filter

Source Type

Cambridge, United Kingdom

Buchanan G.M.,The Royal Society for the Protection of Birds | Donald P.F.,The Royal Society for the Protection of Birds | Butchart S.H.M.,BirdLife International
PLoS ONE | Year: 2011

Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000-2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiatives. © 2011 Buchanan et al. Source

Lavergne S.,CNRS Alpine Ecology Laboratory | Evans M.E.K.,CNRS Systematics, Biodiversity and Evolution Institute | Burfield I.J.,BirdLife International | Jiguet F.,CNRS Science Conservation Center | Thuiller W.,CNRS Alpine Ecology Laboratory
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2013

Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day lifehistory and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change. © 2012 The Author(s) Published by the Royal Society. All rights reserved. Source

Szabo J.K.,Charles Darwin University | Butchart S.H.M.,BirdLife International | Possingham H.P.,University of Queensland | Garnett S.T.,Charles Darwin University
Biological Conservation | Year: 2012

The Red List Index (RLI), which uses information from the IUCN Red List to track trends in the projected overall extinction risk of sets of species, is among the indicators adopted by the world's governments to assess performance under the Convention on Biological Diversity and the United Nations Millennium Development Goals. For greatest impact, such indicators need to be measured and used at a national scale as well as globally. We present the first application of the RLI based on assessments of extinction risk at the national scale using IUCN's recommended methods, evaluating trends in the status of Australian birds for 1990-2010. We calculated RLIs based on the number of taxa in each Red List category and the number that changed categories between assessments in 1990, 2000 and 2010 as a result of genuine improvement or deterioration in status. A novel comparison between trends at the species and ultrataxon (subspecies or monotypic species) level showed that these were remarkably similar, suggesting that current global RLI trends at the species level may also be a useful surrogate for tracking losses in genetic diversity at this scale, for which no global measures currently exist. The RLI for Australia is declining faster than global rates when migratory shorebirds and seabirds are included, but not when changes resulting from threats in Australia alone are considered. The RLI of oceanic island taxa has declined faster than those on the continent or on continental islands. There were also differences in the performance of different jurisdictions within Australia. © 2012 Elsevier Ltd. Source

Runge C.A.,University of Queensland | Runge C.A.,National Center for Ecological Analysis And Synthesis | Watson J.E.M.,University of Queensland | Watson J.E.M.,Wildlife Conservation Society | And 5 more authors.
Science | Year: 2015

Migratory species depend on a suite of interconnected sites. Threats to unprotected links in these chains of sites are driving rapid population declines of migrants around the world, yet the extent to which different parts of the annual cycle are protected remains unknown. We show that just 9% of 1451 migratory birds are adequately covered by protected areas across all stages of their annual cycle, in comparison with 45% of nonmigratory birds. This discrepancy is driven by protected area placement that does not cover the full annual cycle of migratory species, indicating that global efforts toward coordinated conservation planning for migrants are yet to bear fruit. Better-targeted investment and enhanced coordination among countries are needed to conserve migratory species throughout their migratory cycle. Source

Hutchings J.A.,Dalhousie University | Hutchings J.A.,University of Oslo | Butchart S.H.M.,BirdLife International | Collen B.,UK Institute of Zoology | And 2 more authors.
Trends in Ecology and Evolution | Year: 2012

Conservation biology research exhibits a striking but unhelpful dichotomy. Analyses of species decline, extinction risk, and threat mitigation typically encompass broad taxonomic and spatial scales. By contrast, most studies of recovery lack generality, pertaining to specific species, populations, or locales. Narrowly focused analyses offer a weak empirical basis for identifying generic recovery correlates across species, particularly in cases where recovery is not effected by an abatement of threats. We present a research framework for multi-species meta-analyses to identify early-warning signals - 'red flags' - of impaired recovery that can be used as predictors of recovery potential before recovery efforts are initiated. An empirically comprehensive understanding of the demographic, ecological, evolutionary, and threat-related factors affecting the rate and trajectory of species recovery will strengthen conservation efforts to set recovery priorities, targets, and timelines. © 2012 Elsevier Ltd. Source

Discover hidden collaborations