Biotranex LLC

Monmouth Junction, NJ, United States

Biotranex LLC

Monmouth Junction, NJ, United States

Time filter

Source Type

Liu Y.,U.S. Food and Drug Administration | Liu Y.,University of Maryland University College | Wu H.,U.S. Food and Drug Administration | Chong Y.,U.S. Food and Drug Administration | And 6 more authors.
ACS Applied Materials and Interfaces | Year: 2015

Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols. © 2015 American Chemical Society.

Xia Q.,U.S. Food and Drug Administration | Ma L.,U.S. Food and Drug Administration | He X.,U.S. Food and Drug Administration | Cai L.,Biotranex LLC | Fu P.P.,U.S. Food and Drug Administration
Chemical Research in Toxicology | Year: 2015

Pyrrolizidine alkaloid (PA)-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form pyrrolic metabolites to exert cytotoxicity and tumorigenicity. We previously determined that metabolism of tumorigenic PAs produced four DNA adducts, designated as DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, that are responsible for liver tumor initiation. 7-Glutathione-(±)-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP), formed in vivo and in vitro, and 7,9-di-GS-DHP, formed in vitro, are both considered detoxified metabolites. However, in this study we determined that incubation of 7-GS-DHP with 2′-deoxyguanosine (dG) and 2′-deoxyadenosine (dA) yields DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts as well as the reactive metabolite DHP. Furthermore, reaction of 7-GS-DHP with calf thymus DNA in aqueous solution at 37 °C for 4, 8, 16, 24, 48, or 72 h, followed by enzymatic hydrolysis yielded DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts. Under our current experimental conditions, DHP-dA-3 and DHP-dA-4 adducts were formed in a trace amount from the reaction of 7,9-di-GS-DHP with dA. No DHP-dG-3 or DHP-dG-4 adducts were detected from the reaction of 7,9-di-GS-DHP with dG. This study represents the first report that the 7-GS-DHP adduct can be a potential reactive metabolite of PAs leading to DNA adduct formation. © 2015 American Chemical Society.

PubMed | U.S. Food and Drug Administration, Hannover Medical School and Biotranex LLC
Type: | Journal: Chemico-biological interactions | Year: 2016

Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time and bile-acid-concentrationdependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50M), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport.

Ma L.,National Center for Toxicological Research (NCTR) | Zhao H.,National Center for Toxicological Research (NCTR) | Xia Q.,National Center for Toxicological Research (NCTR) | Cai L.,Biotranex LLC | Fu P.P.,National Center for Toxicological Research (NCTR)
Journal of Food and Drug Analysis | Year: 2015

Pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic in experimental animals. Because of their widespread distribution in the world, PA-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Upon metabolism, PAs generate reactive dehydro-PAs and other pyrrolic metabolites that lead to toxicity. Dehydro-PAs are known to react with glutathione (GSH) to form 7-GSH-(+/-)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP) in vivo and in vitro and 7,9-diGS-DHP in vitro. To date, the phototoxicity of GS-DHP adducts has not been well studied. In this study, we synthesized 7-GS-DHP, a tentatively assigned 9-GS-DHP, and two enantiomeric 7,9-diGS-DHP adducts by reaction of dehydromonocrotaline with GSH. The two 7,9-diGS-DHPs were separated by high performance liquid chromatography (HPLC) and their structures were characterized by 1H nuclear magnetic resonance (NMR) and 1H-1H correlation spectroscopy (COSY) NMR spectral analysis. Photoirradiation of 7-GS-DHP, 9-GS-DHP, and the two 7,9-diGS-DHPs as well as dehydromonocrotaline, dehydroheliotrine, and the 7-R enantiomer of DHP (DHR), by UVA light at 0 J/cm2, 14 J/cm2, and 35 J/cm2 in the presence of a lipid, methyl linoleate, all resulted in lipid peroxidation in a light dose-responsive manner. The levels of lipid peroxidation induced by the two isomeric 7,9-diGS-DHPs were significantly higher than that by 7-GS-DHP and 9-GS-DHP. When 7,9-diGS-DHP was irradiated in the presence of sodium azide (NaN3), the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a product induced by the irradiation of 7,9-diGS-DHP. When irradiated in the presence of superoxide dismutase (SOD), the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. These results indicate that lipid peroxidation is mediated by reactive oxygen species (ROS). These results suggest that 7,9-diGS-DHPs are phototoxic, generating lipid peroxidation mediated by ROS. © 2015, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. All rights reserved.

Zhao Y.,National Center for Toxicological Research (NCTR) | Wang S.,National Center for Toxicological Research (NCTR) | Xia Q.,National Center for Toxicological Research (NCTR) | Gamboa Da Costa G.,National Center for Toxicological Research (NCTR) | And 3 more authors.
Chemical Research in Toxicology | Year: 2014

Pyrrolizidine alkaloid-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids exert toxicity through metabolism to dehydropyrrolizidine alkaloids that bind to cellular protein and DNA, leading to hepatotoxicity, genotoxicity, and tumorigenicity. To date, it is not clear how dehydropyrrolizidine alkaloids bind to cellular constituents, including amino acids and proteins, resulting in toxicity. Metabolism of carcinogenic monocrotaline, riddelliine, and heliotrine produces dehydromonocrotaline, dehyroriddelliine, and dehydroheliotrine, respectively, as primary reactive metabolites. In this study, we report that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived valine (DHP-valine) adducts. For structural elucidation, DHP-valine adducts were derivatized with phenyl isothiocyanate (PITC) to DHP-valine-PITC products. After HPLC separation, their structures were characterized by mass spectrometry, UV-visible spectrophotometry, 1H NMR, and 1H-1H COSY NMR spectral analysis. Two DHP-valine-PITC adducts, designated as DHP-valine-PITC-1 and DHP-valine-PITC-3, had the amino group of valine linked to the C7 position of the necine base, and the other two DHP-valine-PITC products, DHP-valine-PITC-2 and DHP-valine-PITC-4, linked to the C9 position of the necine base. DHP-valine-PITC-1 was interconvertible with DHP-valine-PITC-3, and DHP-valine-PITC-2 was interconvertible with DHP-valine-PITC-4. Reaction of dehydroriddelliine and dehydroheliotrine with valine provided similar results. However, reaction of valine and dehydroretronecine (DHR) under similar experimental conditions did not produce DHP-valine adducts. Reaction of dehydromonocrotaline with rat hemoglobin followed by derivatization with PITC also generated the same four DHP-valine-PITC adducts. This represents the first full structural elucidation of protein conjugated pyrrolic adducts formed from reaction of dehydropyrrolizidine alkaloids with an amino acid (valine). In addition, it was found that DHP-valine-2 and DHP-valine-4, with the valine amino group linked at the C7 position of the necine base, can lose the valine moiety to form DHP. (Chemical Equation Presented). © 2014 American Chemical Society.

Xia Q.,National Center for Toxicological Research (NCTR) | Zhao Y.,National Center for Toxicological Research (NCTR) | Von Tungeln L.S.,National Center for Toxicological Research (NCTR) | Doerge D.R.,National Center for Toxicological Research (NCTR) | And 3 more authors.
Chemical Research in Toxicology | Year: 2013

Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin- N2-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9- (deoxyadenosin-N6-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a nontumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for study in animals. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 μmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adduct analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered retronecine, the nontumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of pyrrolizidine alkaloid-induced liver tumor formation. To date, this is the first finding that a set of exogenous DNA adducts are commonly formed from a series of tumorigenic xenobiotics. © 2013 American Chemical Society.

A method is provided to measure modulation of bile salt export transport and/or formation activity in hepatocyte or stable cell line preparations by test agents including but not limited to drugs, drug candidates, biologicals, food components, herb or plant components, proteins, peptides, DNA, RNA. Furthermore, the method is to determine modulation of bile salt export transport and/or formation activity not only by said test agents, but further their metabolites or biotransformed products formed in situ. The bile salt export transport and/or formation activity modulation includes but not limited to inhibition, induction, activation and/or regulation. The method can be practiced to identify test agents, which have potential to cause liver injury, drug-drug interactions, and/or can be used as therapeutic agents for the treatment of cholestasis, abnormality of bile salt metabolism, liver diseases and cholesterol abnormality.

PubMed | Pitie Salpetriere Hospital, The Medicine Company, Biotranex LLC and University Pierre and Marie Curie
Type: Clinical Trial, Phase I | Journal: American journal of cardiovascular drugs : drugs, devices, and other interventions | Year: 2016

The extent of P2Y12 inhibition during coronary intervention is an important determinant of ischemic complications. The currently available oral P2Y12 inhibitors are limited by a relatively slow onset of action and variable on-treatment response.Our objective was to determine the pharmacodynamic (PD) dose-antiplatelet response relationship and the pharmacokinetics of MDCO-157, an intravenous formulation of clopidogrel complexed with sulphobutylether betacyclodextrin, and to identify the dose level of MDCO-157 that matches the PD effect of oral clopidogrel 300 mg.A randomized open-label crossover study was performed in 33 healthy adult volunteers to determine the pharmacokinetic (clopidogrel and clopidogrel H4 thiol active metabolite) and the PD (vasodilator-stimulated phosphoprotein [VASP]) effects of MDCO-157 at doses of 75, 150, and 300 mg and of oral clopidogrel 300 mg.Data are presented as %, mean (standard deviation). The maximum effect of P2Y12 receptor inhibition assessed by flow cytometry using VASP was 70.42 (6.7), 69.45 (7.1), and 65.58 (12.6) for intravenous MDCO-157 at doses of 75, 150, and 300 mg, respectively, compared with 56.6 (17.5) with oral clopidogrel 300 mg administration (p < 0.0001). Intravenous administration of MDCO-157 led to a stepwise increase in plasma exposure of clopidogrel, higher than with administration of an oral dose of 300 mg (p < 0.0001). Plasma exposure of H4-thiol also increased with intravenous dose (3.6 2.6, 6.9 4.6, and 12.4 9.1 hng/ml for intravenous 75, 150, and 300 mg, respectively) but was lower than with oral administration of a 300-mg dose (34.0 16.0; pairwise p < 0.0001).MDCO-157, an intravenous formulation of clopidogrel complexed with sulphobutylether betacyclodextrin, did not show significant platelet inhibition when administered at doses up to 300 mg. Higher doses with longer infusion may be needed to reach a sufficient threshold of active metabolite identifier: NCT01860105.

PubMed | Biotranex LLC
Type: Journal Article | Journal: Chemical research in toxicology | Year: 2015

MDR3 dysfunction is associated with liver diseases. We report here a novel MDR3 activity assay involving in situ biosynthesis in primary hepatocytes of deuterium (d9)-labeled PC and LC-MS/MS determination of transported extracellular PC-d9. Several drugs associated with DILI such as chlorpromazine, imipramine, itraconazole, haloperidol, ketoconazole, sequinavir, clotrimazole, ritonavir, and troglitazone inhibit MDR3 activity. MDR3 inhibition may play an important role in drug-induced cholestasis and vanishing bile duct syndrome. Several lines of evidence demonstrate that the reported assay is physiologically relevant and can be used to assess the potential of chemical entities and their metabolites to modulate MDR3 activity and/or PC biosynthesis in hepatocytes.

PubMed | Bristol Myers Squibb and Biotranex LLC
Type: | Journal: Chemico-biological interactions | Year: 2016

The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various invitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross-species comparisons.

Loading Biotranex LLC collaborators
Loading Biotranex LLC collaborators