Entity

Time filter

Source Type


Gloaguen C.,University of Caen Lower Normandy | Gloaguen C.,BioTICLA Unit Biologie et Therapies Innovantes des Cancers Localement Agressifs | Gloaguen C.,Comprehensive Cancer Center Francois Baclesse | Gloaguen C.,French Institute of Health and Medical Research | And 52 more authors.
Journal of Medicinal Chemistry | Year: 2015

Apoptosis control defects such as the deregulation of Bcl-2 family member expression are frequently involved in chemoresistance. In ovarian carcinoma, we previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect cancer cells against apoptosis and their concomitant inhibition leads to massive apoptosis even in the absence of chemotherapy. Whereas Bcl-xL inhibitors are now available, Mcl-1 inhibition, required to sensitize cells to Bcl-xL-targeting strategies, remains problematic. In this context, we designed and synthesized oligopyridines potentially targeting the Mcl-1 hydrophobic pocket, evaluated their capacity to inhibit Mcl-1 in live cells, and implemented a functional screening assay to evaluate their ability to sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. We established structure-activity relationships and focused our attention on MR29072, named Pyridoclax. Surface plasmon resonance assay demonstrated that pyridoclax directly binds to Mcl-1. Without cytotoxic activity when administered as a single agent, pyridoclax induced apoptosis in combination with Bcl-xL-targeting siRNA or with ABT-737 in ovarian, lung, and mesothelioma cancer cells. © 2015 American Chemical Society.

Discover hidden collaborations