Entity

Time filter

Source Type

HOUSTON, TX, United States

Patent
Biotex, Inc. | Date: 2011-11-14

The present invention is directed to nucleic acid ligands to LL37, methods for producing said nucleic acid ligands, and methods for utilizing said nucleic acid ligands. In one exemplary embodiment, for example, this invention relates to nucleic acid ligands exhibiting high specific binding affinity to LL37 peptides, precursors and/or portions thereof. Further, the nucleic acid ligands may bind competitively with native ligands of LL37 and may also inhibit and/or interfere with LL37 function, such as by binding to LL37.


Patent
Biotex, Inc. | Date: 2011-08-17

This invention relates to methods for molecular detection, particularly to methods utilizing target-specific molecular probes. In exemplary embodiments, target-specific molecular probes include single-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) aptamers. In general, the molecular probe may bind with relatively high specificity to a given target. In one aspect, a method for molecular detection comprises a molecular probe paired to a reporter molecule wherein the molecular probe impairs the amplification of the reporter molecule in the absence of the target molecule.


Patent
Biotex, Inc. | Date: 2011-03-12

The present invention is directed to methods and devices for tissue collection and analysis, and particularly to methods and devices for collecting, preserving and analyzing biopsy samples. In one aspect, a method for collecting a tissue sample includes disposing a collection device proximate and/or within a tissue, such as of a body, drawing in at least a portion of the tissue into the collection device, adhering the at least a portion of the tissue to at least a portion of the collection device and separating the sample and collection device from the remainder of the tissue and/or body. In general, the method of adhering the tissue sample to the collection device may also preserve the tissue sample, such as, for example, by altering the temperature of the tissue sample. In one embodiment, the method of adhering the tissue sample to the collection device includes lowering the temperature of the collection device and thus the tissue sample such that the tissue sample may adhere to the collection device and may also be preserved against degradation.


Patent
Biotex, Inc. | Date: 2010-01-07

The present invention relates to methods for generating functional biomolecules, particularly to methods for generating multiple functional nucleic acids against multiple target molecules simultaneously. The present invention further relates to methods for generating functional biomolecules, particularly to functional nucleic acids, that bind with functional activity to another biomolecule, such as a receptor molecule. In one exemplary aspect of the invention, generation of functional biomolecules may be performed against multiple targets simultaneously within a single system, such as the generation of functional nucleic acid ligands within a single reaction volume. In general, a plurality of targets may be disposed within in a single reaction volume and a library of biomolecules, such as a nucleic acid library, may be applied to the reaction volume. The members of the library that do not bind to any of the plurality of targets under given conditions may then be partitioned, such as by washing. The remaining members of the library may then be marked and/or tagged, such as to identify the particular target or targets to which the member of the library binds. The binding members of the library may then be isolated and, by virtue of the marking or tagging, be matched to a particular target or targets.


Patent
Biotex, Inc. | Date: 2012-06-06

The present invention is directed to a system, device and method for measuring the concentration of an analyte in a fluid or matrix. A thermodynamically stabilized analyte binding ligand for use in the system, device and method is disclosed. The thermodynamically stabilized analyte binding ligand is resistant to degradation at physiological temperatures and its use within the device provides a minimally invasive sensor for monitoring the concentration of an analyte in a fluid or matrix as are present in the body of an animal.

Discover hidden collaborations