Time filter

Source Type

Ljubljana, Slovenia

Slatnar A.,Biotehnical Faculty | Jakopic J.,Biotehnical Faculty | Stampar F.,Biotehnical Faculty | Veberic R.,Biotehnical Faculty | Jamnik P.,Biotehnical Faculty
PLoS ONE | Year: 2012

Background: Berry fruit is known for its high contents of various bioactive compounds. The latter constitute of anthocyanins, flavonols and flavanols and posses high antioxidative activity. The highly dynamic antioxidant system can be evaluated in vitro and in vivo in several model organisms. These measurements represent a good approximation of the real potential of bioactive compounds in the cells of higher eucarions. The aim of the study was thus to determine in vitro and in vivo antioxidant activity of different berry juices, which reportedly contain high amounts of phenolics. Methodology/Principal Findings: Five different berry species were collected from several locations in central Slovenia and juice was extracted from each species separately. Juice was assessed for their in vitro and in vivo antioxidant activity. Phenolic profiles of berries were determined with the use of a HPLC/MS system, in vitro antioxidant activity with the DPPH radical scavenging method and in vivo antioxidative activity using Saccharomyces cerevisiae. The highest diversity of individual phenols was detected for bilberry juice. The highest in vitro antioxidant capacity was determined for blackcurrant juice. A decrease in intracellular oxidation compared to control was observed in the following order: blackcurrant < chokeberry = blueberry < bilberry. The results indicate important differences in antioxidant activity of berry juices between in vitro and in vivo studies. Conclusion/Significance: In addition to the total content of phenolic compounds entering the cells, a key factor determining antioxidative activity of berry juices is also the ratio between the compounds. Where high content levels of anthocyanins and very low content levels of flavonols and hydroxycinnamic acids were measured a lower intracellular oxidation has been detected. Specifically, intracellular oxidation increased with higher consumption of hydroxycinnamic acids and lower consumption of anthocyanins in the cells. Antioxidative activity also increased when the consumption of analyzed phenols was rather low. © 2012 Slatnar et al. Source

Discover hidden collaborations