BIOSYST MeBioS

Leuven, Belgium

BIOSYST MeBioS

Leuven, Belgium
SEARCH FILTERS
Time filter
Source Type

Witters D.,BIOSYST MeBioS | Vergauwe N.,BIOSYST MeBioS | Vermeir S.,BIOSYST MeBioS | Ceyssens F.,MICAS ESAT | And 3 more authors.
Lab on a Chip - Miniaturisation for Chemistry and Biology | Year: 2011

In this paper we report on the controlled biofunctionalization of the hydrophobic layer of electrowetting-on-dielectric (EWOD) based microfluidic chips with the aim to execute (adherent) cell-based assays. The biofunctionalization technique involves a dry lift-off method with an easy to remove Parylene-C mask and allows the creation of spatially controlled micropatches of biomolecules in the Teflon-AF ® layer of the chip. Compared to conventional methods, this method (i) is fully biocompatible; and (ii) leaves the hydrophobicity of the chip surface unaffected by the fabrication process, which is a crucial feature for digital microfluidic chips. In addition, full control of the geometry and the dimensions of the micropatches is achieved, allowing cells to be arrayed as cell clusters or as single cells on the digital microfluidic chip surface. The dry Parylene-C lift-off technique proves to have great potential for precise biofunctionalization of digital microfluidic chips, and can enhance their use for heterogeneous bio-assays that are of interest in various biomedical applications. © 2011 The Royal Society of Chemistry.


PubMed | BIOSYST MeBioS
Type: Journal Article | Journal: Lab on a chip | Year: 2011

In this paper we report on the controlled biofunctionalization of the hydrophobic layer of electrowetting-on-dielectric (EWOD) based microfluidic chips with the aim to execute (adherent) cell-based assays. The biofunctionalization technique involves a dry lift-off method with an easy to remove Parylene-C mask and allows the creation of spatially controlled micropatches of biomolecules in the Teflon-AF() layer of the chip. Compared to conventional methods, this method (i) is fully biocompatible; and (ii) leaves the hydrophobicity of the chip surface unaffected by the fabrication process, which is a crucial feature for digital microfluidic chips. In addition, full control of the geometry and the dimensions of the micropatches is achieved, allowing cells to be arrayed as cell clusters or as single cells on the digital microfluidic chip surface. The dry Parylene-C lift-off technique proves to have great potential for precise biofunctionalization of digital microfluidic chips, and can enhance their use for heterogeneous bio-assays that are of interest in various biomedical applications.

Loading BIOSYST MeBioS collaborators
Loading BIOSYST MeBioS collaborators