Rostock, Germany
Rostock, Germany

Time filter

Source Type

Nausch H.,University of Rostock | Mischofsky H.,University of Rostock | Koslowski R.,Bioserv GmbH | Meyer U.,Bioserv GmbH | And 2 more authors.
PLoS ONE | Year: 2012

We evaluated transgenic tobacco plants as an alternative to Escherichia coli for the production of recombinant human complement factor 5a (C5a). C5a has not been expressed in plants before and is highly unstable in vivo in its native form, so it was necessary to establish the most suitable subcellular targeting strategy. We used the strong and constitutive CaMV 35S promoter to drive transgene expression and compared three different subcellular compartments. The yields of C5a in the T0 transgenic plants were low in terms of the proportion of total soluble protein (TSP) when targeted to the apoplast (0.0002% TSP) or endoplasmic reticulum (0.0003% TSP) but was one order of magnitude higher when targeted to the vacuole (0.001% TSP). The yields could be increased by conventional breeding (up to 0.014% TSP in the T2 generation). C5a accumulated to the same level in seeds and leaves when targeted to the apoplast but was up to 1.7-fold more abundant in the seeds when targeted to the ER or vacuole, although this difference was less striking in the better-performing lines. When yields were calculated as an amount per gram fresh weight of transgenic plant tissue, the vacuole targeting strategy was clearly more efficient in seeds, reaching 35.8 μg C5a per gram of fresh seed weight compared to 10.62 μg C5a per gram fresh weight of leaves. Transient expression of C5aER and C5aVac in N. benthamiana, using MagnICON vectors, reached up to 0.2% and 0.7% of TSP, respectively, but was accompanied by cytotoxic effects and induced leaf senescence. Western blot of the plant extracts revealed a band matching the corresponding glycosylated native protein and the bioassay demonstrated that recombinant C5a was biologically active. © 2012 Nausch et al.


Nausch H.,University of Rostock | Huckauf J.,University of Rostock | Koslowski R.,Bioserv GmbH | Meyer U.,Bioserv GmbH | And 2 more authors.
PLoS ONE | Year: 2013

In this study, we compared basic expression approaches for the efficient expression of bioactive recombinant human interleukin-6 (IL6), as an example for a difficult-to-express protein. We tested these approaches in a laboratory scale in order to pioneer the commercial production of this protein in Escherichia coli (E. coli). Among the various strategies, which were tested under Research and Development (R&D) conditions, aggregation-prone IL6 was solubilized most effectively by co-expressing cytoplasmic chaperones. Expression of a Glutathion-S-Transferase (GST) fusion protein was not efficient to increase IL6 solubility. Alteration of the cultivation temperature significantly increased the solubility in both cases, whereas reduced concentrations of IPTG to induce expression of the T7lac-promotor only had a positive effect on chaperone-assisted expression. The biological activity was comparable to that of commercial IL6. Targeting the expressed protein to an oxidizing environment was not effective in the generation of soluble IL6. Taken together, the presence of chaperones and a lowered cultivation temperature seem effective to isolate large quantities of soluble IL6. This approach led to in vivo soluble, functional protein fractions and reduces purification and refolding requirements caused by downstream purification procedures. The final yield of soluble recombinant protein averaged approximately 2.6 mg IL6/liter of cell culture. These findings might be beneficial for the development of the large-scale production of IL6 under the conditions of current good manufacturing practice (cGMP). © 2013 Nausch et al.


Nausch H.,University of Rostock | Mikschofsky H.,University of Rostock | Koslowski R.,Bioserv GmbH | Meyer U.,Bioserv GmbH | And 2 more authors.
PLoS ONE | Year: 2012

Tobacco plants can be used to express recombinant proteins that cannot be produced in a soluble and active form using traditional platforms such as Escherichia coli. We therefore expressed the human glycoprotein interleukin 6 (IL6) in two commercial tobacco cultivars (Nicotiana tabacum cv. Virginia and cv. Geudertheimer) as well as the model host N. benthamiana to compare different transformation strategies (stable vs. transient expression) and subcellular targeting (apoplast, endoplasmic reticulum (ER) and vacuole). In T0 transgenic plants, the highest expression levels were achieved by ER targeting but the overall yields of IL6 were still low in the leaves (0.005% TSP in the ER, 0.0008% in the vacuole and 0.0005% in the apoplast). The apoplast variant accumulated to similar levels in leaves and seeds, whereas the ER-targeted variant was 1.2-fold more abundant in seeds and the vacuolar variant was 6-fold more abundant in seeds. The yields improved in subsequent generations, with the best-performing T2 plants producing the ER-targeted IL6 at 0.14% TSP in both leaves and seeds. Transient expression of ER-targeted IL6 in leaves using the MagnICON system resulted in yields of up to 7% TSP in N. benthamiana, but only 1% in N. tabacum cv. Virginia and 0.5% in cv. Geudertheimer. Although the commercial tobacco cultivars produced up to threefold more biomass than N. benthamiana, this was not enough to compensate for the lower overall yields. The recombinant IL6 produced by transient and stable expression in plants was biologically active and presented as two alternative bands matching the corresponding native protein. © 2012 Mikschofsky et al.

Loading Bioserv GmbH collaborators
Loading Bioserv GmbH collaborators