Entity

Time filter

Source Type

Tokyo, Japan

Patent
Biosensors | Date: 2015-07-21

The present invention provides improved processes for obtaining rapamycin derivatives including Biolimus A9.


System and Method for measuring the growth of a bacterial culture and its response to one or more antimicrobials using measurement of mass of individual microbes. Methods include periodic sampling, determining change in mass and concentration, and comparing growth rates of cultures in nutrient broth vs. mixtures containing various antibiotic mixtures. A number of antimicrobials can be compared in one measurement by multiplexing or using multiple sensors to measure in parallel. Growth and antibiotic efficacy can be assessed at low concentrations at the onset of growth, typically within 1 to 2 hours.


A method for measuring a the viscosity of a fluid in a microchannel including steps of introducing a fluid containing particles to the microchannel, causing the fluid to flow through the microchannel by a applying a pressure drop, measuring a transit time of one or more particles through the microchannel, determining the flow rate from the particle transit times and the known volume of the microchannel, and determining the viscosity of the fluid from the flow rate and pressure drop.


Patent
Biosensors | Date: 2014-03-16

Apparatus for radiation based imaging of a non-homogenous target area having distinguishable regions therein, comprises: an imaging unit configured to obtain radiation intensity data from a target region in the spatial dimensions and at least one other dimension, and an image four-dimension analysis unit analyzes the intensity data in the spatial dimension and said at least one other dimension in order to map the distinguishable regions. The system typically detects rates of change over time in signals from radiopharmaceuticals and uses the rates of change to identify the tissues. In a preferred embodiment, two or more radiopharmaceuticals are used, the results of one being used as a constraint on the other.


An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of a monocyclic triene immunosuppressive compound having an alkyl group substituent at carbon position 40 in the compound. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.

Discover hidden collaborations