Time filter

Source Type

Salt Lake City, UT, United States

Krishnan R.,NeuroPhage Pharmaceuticals | Tsubery H.,NeuroPhage Pharmaceuticals | Proschitsky M.Y.,NeuroPhage Pharmaceuticals | Asp E.,NeuroPhage Pharmaceuticals | And 13 more authors.
Journal of Molecular Biology | Year: 2014

Misfolded protein aggregates, characterized by a canonical amyloid fold, play a central role in the pathobiology of neurodegenerative diseases. Agents that bind and sequester neurotoxic intermediates of amyloid assembly, inhibit the assembly or promote the destabilization of such protein aggregates are in clinical testing. Here, we show that the gene 3 protein (g3p) of filamentous bacteriophage mediates potent generic binding to the amyloid fold. We have characterized the amyloid binding and conformational remodeling activities using an array of techniques, including X-ray fiber diffraction and NMR. The mechanism for g3p binding with amyloid appears to reflect its physiological role during infection of Escherichia coli, which is dependent on temperature-sensitive interdomain unfolding and cis-trans prolyl isomerization of g3p. In addition, a natural receptor for g3p, TolA-C, competitively interferes with Aβ binding to g3p. NMR studies show that g3p binding to Aβ fibers is predominantly through middle and C-terminal residues of the Aβ subunit, indicating β strand-g3p interactions. A recombinant bivalent g3p molecule, an immunoglobulin Fc (Ig) fusion of the two N-terminal g3p domains, (1) potently binds Aβ fibers (fAβ) (KD = 9.4 nM); (2); blocks fAβ assembly (IC50 ~ 50 nM) and (3) dissociates fAβ (EC50 = 40-100 nM). The binding of g3p to misfolded protein assemblies is generic, and amyloid-targeted activities can be demonstrated using other misfolded protein systems. Taken together, our studies show that g3p(N1N2) acts as a general amyloid interaction motif. © 2014 Elsevier Ltd. Source

Votsmeier C.,Bayer AG | Plittersdorf H.,Bayer AG | Hesse O.,Bayer AG | Scheidig A.,Bayer AG | And 8 more authors.
mAbs | Year: 2012

In therapeutic or diagnostic antibody discovery, affinity maturation is frequently required to optimize binding properties. In some cases, achieving very high affinity is challenging using the display-based optimization technologies. Here we present an approach that begins with the creation and clonal, quantitative analysis of soluble Fab libraries with complete diversification in adjacent residue pairs encompassing every complementarity-determining region position. This was followed by alternative recombination approaches and high throughput screening to co-optimize large sets of the found improving mutations. We applied this approach to the affinity maturation of the anti-tumor necrosis factor antibody adalimumab and achieved ∼500-fold affinity improvement, resulting in femtomolar binding. To our knowledge, this is the first report of the in vitro engineering of a femtomolar affinity antibody against a protein target without display screening. We compare our findings to a previous report that employed extensive mutagenesis and recombination libraries with yeast display screening. The present approach is widely applicable to the most challenging of affinity maturation efforts. © 2012 Landes Bioscience. Source

Yamniuk A.P.,Bristol Myers Squibb | Newitt J.A.,Bristol Myers Squibb | Doyle M.L.,Bristol Myers Squibb | Arisaka F.,Tokyo Institute of Technology | And 6 more authors.
Journal of Biomolecular Techniques | Year: 2015

A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surfacebased method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions. © 2015 ABRF. Source

Christopher J.A.,Heptares Therapeutics | Brown J.,Heptares Therapeutics | Dore A.S.,Heptares Therapeutics | Errey J.C.,Heptares Therapeutics | And 8 more authors.
Journal of Medicinal Chemistry | Year: 2013

Biophysical fragment screening of a thermostabilized β1- adrenergic receptor (β1AR) using surface plasmon resonance (SPR) enabled the identification of moderate affinity, high ligand efficiency (LE) arylpiperazine hits 7 and 8. Subsequent hit to lead follow-up confirmed the activity of the chemotype, and a structure-based design approach using protein-ligand crystal structures of the β1AR resulted in the identification of several fragments that bound with higher affinity, including indole 19 and quinoline 20. In the first example of GPCR crystallography with ligands derived from fragment screening, structures of the stabilized β1AR complexed with 19 and 20 were determined at resolutions of 2.8 and 2.7 Å, respectively. © 2013 American Chemical Society. Source

Halavaty A.S.,Northwestern University | Halavaty A.S.,Center for Structural Genomics of Infectious Diseases | Rich R.L.,Biosensor Tools LLC | Chen C.,University of Toronto | And 14 more authors.
Acta Crystallographica Section D: Biological Crystallography | Year: 2015

When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD+) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD+, NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme. © 2015 International Union of Crystallography. Source

Discover hidden collaborations