Entity

Time filter

Source Type

Meldola, Italy

Rocca A.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori | Farolfi A.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori | Bravaccini S.,Biosciences Laboratory | Schirone A.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori | Amadori D.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori
Expert Opinion on Pharmacotherapy | Year: 2014

Introduction: The cyclin D-cyclin-dependent kinases 4 and 6 (CDK4/6)-retinoblastoma (Rb) pathway, governing the cell cycle restriction point, is frequently altered in breast cancer and is a potentially relevant target for anticancer therapy. Palbociclib (PD 0332991), a potent and selective inhibitor of CDK4 and CDK6, inhibits proliferation of several Rb-positive cancer cell lines and xenograft models. Areas covered: The basic features and abnormalities of the cell cycle in breast cancer are described, along with their involvement in estrogen signaling and endocrine resistance. The pharmacological features of palbociclib, its activity in preclinical models of breast cancer and the potential determinants of response are then illustrated, and its clinical development in breast cancer described. A literature search on the topic was conducted through PubMed and the proceedings of the main cancer congresses of recent years. Expert opinion: The combination of palbociclib with endocrine agents is a very promising treatment and Phase III clinical trials are ongoing to confirm its efficacy. Further, potentially useful combinations are those with drugs targeting mitogenic signaling pathways, such as HER2-and PI3K-inhibitors. Combination with chemotherapy seems more problematic, as antagonism has been reported in preclinical models. The identification of predictive factors, already explored in preclinical studies, must be further refined and validated in clinical trials. © 2014 Informa UK, Ltd. Source


Ulivi P.,Biosciences Laboratory
International Journal of Molecular Sciences | Year: 2016

The induction of resistance mechanisms represents an important problem for the targeted therapy of patients with non-small-cell lung cancer (NSCLC). The best-known resistance mechanism induced during treatment with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is EGFR T790M mutation for which specific drugs are have been developed. However, other molecular alterations have also been reported as induced resistance mechanisms to EGFR-TKIs. Similarly, there is growing evidence of acquired resistance mechanisms to anaplastic lymphoma kinase (ALK)-TKI treatment. A better understanding of these acquired resistance mechanisms is essential in clinical practice as patients could be treated with specific drugs that are active against the induced alterations. The use of free circulating tumor nucleic acids or circulating tumor cells (CTCs) enables resistance mechanisms to be characterized in a non-invasive manner and reduces the need for tumor re-biopsy. This review discusses the main resistance mechanisms to TKIs and provides a comprehensive overview of innovative strategies to evaluate known resistance mechanisms in free circulating nucleic acids or CTCs and potential future orientations for these non-invasive approaches. © 2016 by the author; licensee MDPI, Basel, Switzerland. Source


Molinari C.,Biosciences Laboratory | Matteucci F.,Diagnostic Nuclear Medicine Unit | Caroli P.,Diagnostic Nuclear Medicine Unit | Passardi A.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori
Clinical Colorectal Cancer | Year: 2015

Standard treatment of patients with locally advanced rectal cancer (LARC) includes neoadjuvant chemoradiotherapy (NCRT) followed by surgery. Tumor regression after NCRT varies substantially among individuals and pathological complete response is a known prognostic factor for LARC. The identification of a predictive model for response to chemoradiotherapy would help clinicians to identify patients who would probably benefit from multimodal treatment and to perform an early assessment of individual prognosis. Carcinoembryonic antigen has proven to be a good predictor of response in several clinical trials. Other widely studied predictive models in LARC include molecular biomarkers, analyzed at various levels and by different techniques, and molecular imaging, in particular magnetic resonance imaging and positron emission tomography/computed tomography. Although none of the studied markers have been approved in clinical practice, their evaluation in larger, prospective trials and in combined predictive models could be of use to define tailored therapeutic strategies. © 2015 Elsevier Inc. Source


Fabbri F.,Biosciences Laboratory | Carloni S.,Biosciences Laboratory | Zoli W.,Biosciences Laboratory | Ulivi P.,Biosciences Laboratory | And 7 more authors.
Cancer Letters | Year: 2013

The characterization of circulating tumor cells (CTCs) could substantially improve the management of cancer patients. However, their study is still a matter of debate, often due to lymphocyte contamination. In the present paper, an investigation of CTCs was carried out for the first time using DEPArray, a dielectrophoresis-based platform able to detect and sort pure CTCs. Analyses were conducted on peripheral blood (PB) samples from patients with metastatic colon cancer. After 100% pure cell recovery and whole genome amplification, KRAS gene mutation of CTCs was screened and compared to gene status in the primary tumor tissue. CTCs were found in 21 colon cancer patients (52.5%), with more than three tumor cells per 7.5. ml. KRAS gene mutation analysis, showed a mutational concordance between CTCs and primary tumor in 50% of matched cases. The present study demonstrates for the first time the feasibility of analyzing at the molecular level pure CTCs avoiding lymphocyte contamination using an innovative instrumentation, and a KRAS discordance between CTCs and primary tissue. Our results present dielectrophoresis-based procedures as a new standard in single cell analysis and recovery and invite careful reflection on the value of CTCs characterization. © 2013 Elsevier Ireland Ltd. Source


Pasini A.,University of Bologna | Delmonte A.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori | Tesei A.,Biosciences Laboratory | Calistri D.,Biosciences Laboratory | Giordano E.,University of Bologna
Drugs | Year: 2015

Targeting chromatin-mediated transcriptional control of gene expression is nowadays considered a promising new strategy, transcending conventional anticancer therapy. As a result, molecules acting as DNA demethylating agents or histone deacetylase inhibitors (HDACi) have entered the clinical arena in the last decade. Given the evidence suggesting that epigenetic regulation is significantly involved in lung cancer development and progression, the potential of epigenetically active compounds to modulate gene expression and reprogram cancer cells to a less aggressive phenotype is, at present, a promising strategy. Accordingly, a large number of compounds that interact with the epigenetic machinery of gene expression regulation are now being developed and tested as potential antitumor agents, either alone or in combination with standard therapy. The preclinical rationale and clinical data concerning the pharmacological modulation of chromatin organization in non-small cell lung cancer (NSCLC) is described in this review. Although preclinical data suggest that a pharmacological treatment targeting the epigenetic machinery has relevant activity over the neoplastic phenotype of NSCLC cells, clinical results are disappointing, leading only to short periods of disease stabilization in NSCLC patients. This evidence calls for a significant rethinking of strategies for an effective epigenetic therapy of NSCLC. The synergistic effect of concurrent epigenetic therapies, use at low doses, the priming of current treatments with previous epigenetic drugs, and the selection of clinical trial populations based on epigenetic biomarkers/signatures appear to be the cornerstones of a mature therapeutic strategy aiming to establish new regimens for reprogramming malignant cells and improving the clinical history of affected patients. © 2015 Springer International Publishing Switzerland. Source

Discover hidden collaborations