BioRunx Co.

Cheongju, South Korea

BioRunx Co.

Cheongju, South Korea
Time filter
Source Type

Islam N.M.,Kyushu Institute of Technology | Kato T.,Kyushu Institute of Technology | Nishino N.,Kyushu Institute of Technology | Kim H.-J.,BioRunx Co. | And 2 more authors.
Bioorganic and Medicinal Chemistry Letters | Year: 2010

Bicyclic tetrapeptide hydroxamic acids were prepared as histone deacetylase (HDAC) inhibitors, and the evaluated inhibitory activity shows that they are potent against HDAC1 and HDAC4. The in vivo activity depends on alkyl loop length. © 2009 Elsevier Ltd. All rights reserved.

Hoque M.A.,Kyushu Institute of Technology | Arai T.,Kyushu Institute of Technology | Nishino N.,Kyushu Institute of Technology | Kim H.-J.,BioRunx Co Ltd | And 2 more authors.
Bioorganic and Medicinal Chemistry Letters | Year: 2012

Two thioacetate tails were introduced to the chlamydocin- and CHAP31-related cyclic tetrapeptides. An intramolecular disulfide bridge could be formed in the CHAP31-related cyclic peptides. Both the thioacetate-tailed and disulfide-bridged peptides were potent histone deacetylase inhibitors in the presence of sulfhydryl compound. Potent p21 promoter inducing activity was also observed in vivo. © 2012 Elsevier Ltd. All rights reserved.

Arai T.,Kyushu Institute of Technology | Ashraful Hoque Md.,Kyushu Institute of Technology | Nishino N.,Kyushu Institute of Technology | Kim H.-J.,BioRunx Co Ltd | And 2 more authors.
Amino Acids | Year: 2013

Cyclic depsipeptide FK228 with an intramolecular disulfide bond is a potent inhibitor of histone deacetylases (HDAC). FK228 is stable in blood because of its prodrug function, whose -SS- bond is reduced within the cell. Here, cyclic peptides with -SS- bridges between a variety of amino acids were synthesized and assayed for HDAC inhibition. Cyclic peptide 3, cyclo(-l-amino acid-l-amino acid-l-Val-d-Pro-), with an -SS- bridge between the first and second amino acids, was found to be a potent HDAC inhibitor. Cyclic peptide 7, cyclo(-l-amino acid-d-amino acid-l-Val-d-Pro-), with an -SS- bridge between the first and second amino acids, was also a potent HDAC inhibitor. © 2013 Springer-Verlag Wien.

Song G.-A.,Seoul National University | Kim H.-J.,BioRunx Co. | Woo K.-M.,Seoul National University | Baek J.-H.,Seoul National University | And 3 more authors.
Journal of Biological Chemistry | Year: 2010

Fibrodysplasia ossificans progressiva (FOP), a rare genetic and catastrophic disorder characterized by progressive heterotopic ossification, is caused by a point mutation, c.617G>A; p.R206H, in the activin A receptor type 1 (ACVR1) gene, one of the bone morphogenetic protein type I receptors (BMPR-Is). Although altered BMP signaling has been suggested to explain the pathogenesis, the molecular consequences of this mutation are still elusive. Here we studied the impact of ACVR1 R206H mutation on BMP signaling and its downstream signaling cascades in murine myogenic C2C12 cells and HEK 293 cells. We found that ACVR1 was the most abundant of the BMPR-Is expressed in mesenchymal cells but its contribution to osteogenic BMP signal transduction was minor. The R206H mutant caused weak activation of the BMP signaling pathway, unlike the Q207D mutant, a strong and constitutively active form. The R206H mutant showed a decreased binding affinity for FKBP1A/FKBP12, a known safeguard molecule against the leakage of transforming growth factor (TGF)-β or BMP signaling. The decreased binding affinity of FKBP1A to the mutant R206H ACVR1 resulted in leaky activation of the BMP signal, and moreover, it decreased steady-state R206H ACVR1 protein levels. Interestingly, while WT ACVR1 and FKBP1A were broadly distributed in plasma membrane and cytoplasm without BMP-2 stimulation and then localized in plasma membrane on BMP-2 stimulation, R206H ACVR1 and FKBP1A were mainly distributed in plasma membrane regardless of BMP-2 stimulation. The impaired binding to FKBP1A and an altered subcellular distribution by R206H ACVR1 mutation may result in mild activation of osteogenic BMP-signaling in extraskeletal sites such as muscle, which eventually lead to delayed and progressive ectopic bone formation in FOP patients. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

PubMed | BioRunx Co. and Seoul National University
Type: Journal Article | Journal: Journal of bone metabolism | Year: 2015

Many histone deacetylase (HDAC) inhibitors are well recognized as potential anti-cancer drugs. Inhibition of HDACs induces temporal transcription or epigenetic control, thus regulating many different biological responses. Here, we investigated the osteogenic effect of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA; vorinostat).The effects of SAHA on osteoblast differentiation were examined in the 6XOSE-Luc reporter assay for determination of runt-related transcription factor 2 (Runx2) activity and alkaline phosphatase (ALP) activity and in an immunoprecipitation assay to determine the Runx2 acetylation state. The osteogenic activity of SAHA in vivo was studied in and receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoporotic mouse model.SAHA increased the transcriptional activity of Runx2 in a dose-dependent manner in the 6XOSE-Luc reporter assay. SAHA by itself was unable to induce ALP activity; however, SAHA enhanced ALP activity induced by bone morphogenetic protein-2 (BMP-2). The degree of acetylation of Runx2 was increased with SAHA treatment, which suggests that the increase in Runx2 transcriptional activity might be dependent on stabilization by acetylation. Also, SAHA successfully reversed soluble RANKL-induced osteoporotic bone loss.Our study shows an intriguing osteogenic potential of SAHA in a BMP-2-dependent manner and suggests that SAHA could be used at lower doses along with BMP-2 to treat osteoporosis.

Choi E.-S.,Chonbuk National University | Han G.,Yonsei University | Park S.-K.,Korea University | Lee K.,Korea University | And 3 more authors.
Molecular Medicine Reports | Year: 2013

Histone deacetylase (HDAC) inhibitors are emerging as potent anticancer agents due to their ability to induce apoptosis in various cancer cells, including prostate cancer cells. In the present study, we synthesized a novel HDAC inhibitor, A248, and investigated its apoptotic activity and molecular target in the DU145 and PC3 human prostate cancer cell lines. A248 inhibited the growth of DU145 and PC3 cells and induced apoptosis, as demonstrated by nuclear fragmentation and the accumulation of cells at subG1 phase of cell cycle. The treatment of DU145 and PC3 prostate cancer cells with A248 resulted in the downregulation of specificity protein 1 (Sp1) expression. Since the expression levels of survivin and Mcl-1 depend on Sp1, we also investigated the effects of A248 on survivin and Mcl-1 expression using western blot analysis and immunocytochemistry. The results showed that A248 markedly decreased the expression of survivin and Mcl-1. These data suggest that A248 has apoptotic activity in human prostate cancer cells and that Sp1 may be the molecular target of A248 treatment for inducing apoptosis in prostate cancer cells.

Cho M.,Yonsei University | Choi E.,Yonsei University | Kim J.H.,Yonsei University | Kim H.,Yonsei University | And 5 more authors.
ChemMedChem | Year: 2014

Expression and stability of the tumor suppressor runt-related transcription factora 3 (RUNX3) are regulated by histone deacetylase (HDAC). HDAC inhibition alters epigenetic and posttranslational stability of RUNX3, leading to tumor suppression. However, HDAC inhibitors can nonselectively alter global gene expression through chromatin remodeling. Thus, lactam-based HDAC inhibitors were screened to identify potent protein stabilizers that maintain RUNX3 stability by acetylation. RUNX activity and HDAC inhibition were determined for 111 lactam-based analogues through a cell-based RUNX activation and HDAC inhibition assay. 3-[1-(4-Bromobenzyl)-2-oxo-2,5-dihydro-1H-pyrrol-3-yl]-N- hydroxypropanamide (11-8) significantly increased RUNX3 acetylation and stability with relatively low RUNX3 mRNA expression and HDAC inhibitory activity. This compound showed significant antitumor effects, which were stronger than SAHA, in an MKN28 xenograft model. Thus, we propose a novel strategy, in which HDAC inhibitors serve as antitumor chemotherapeutic agents that selectively target epigenetic regulation and protein stability of RUNX3. © 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.

Loading BioRunx Co. collaborators
Loading BioRunx Co. collaborators