Time filter

Source Type

Groningen, Netherlands

Biorion Technologies B.V. | Date: 2010-12-30

The invention relates to the field of medicine. Among others, it relates to biologically active analogs of interferons (IFNs) which show less unwanted side-effects and to the therapeutic uses thereof. Provided is an IFN analog, wherein the moiety mediating binding to its natural receptor is at least functionally disrupted and wherein the analog comprises a signaling moiety capable of mediating intracellular IFN activity, said signaling moiety being provided at its N-terminus, optionally via a linker, with at least one targeting domain capable of binding to a cell surface receptor other than the IFN receptor.

Prakash J.,University of Groningen | Prakash J.,BiOrion Technologies BV | Beljaars L.,University of Groningen | Harapanahalli A.K.,University of Groningen | And 7 more authors.
International Journal of Cancer | Year: 2010

Tumor-targeting of anticancer drugs is an interesting approach for the treatment of cancer since chemotherapies possess several adverse effects. In the present study, we propose a novel strategy to deliver anticancer drugs to the tumor cells through the mannose-6-phosphate/insutin-like growth factor receptor (M6P/IGF-IIR) which are abundantly expressed in several human tumors. We developed a drug carrier against M6P/IGF-II receptor by modifying human serum albumin (HSA) with M6P moieties. M6P-HSA specifically bound and Internalized into M6P/IGF-IIR-expressing B16 melanoma cells as demonstrated with radioactive studies and anti-HSA immunostaining. In vivo, M6P-HSA rapidly accumulated in subcutaneous tumors in tumor and stromal components after an intravenous injection. To demonstrate the application of M6P-HSA as a drug carrier, we coupled doxorubicin to it. Dox-HSA-M6P conjugate could release doxorubicin at lysosomal pH and showed M6P-specific binding and uptake in tumor cells. In vitro, a short exposure with Dox-HSA-M6P induced killing of tumor cells, which could be blocked by excess M6P-HSA. In vivo, Dox-HSA-M6P distributed to tumors and some other organs while free doxorubicin distributed to all organs but slightly to tumors. In B16 tumor-bearing mice, Dox-HSA-M6P significantly inhibited the tumor growth whereas an equimolar dose of free doxorubicin did not show any anti-tumor effect. In addition, targeted doxorubicin did not show any side-effects on liver and kidney function tests, body weight and blood cell counts. In conclusion, M6P-HSA is a suitable carrier for delivery of anticancer drugs to tumors through M6P/IGF-IIR. Improved antitumor effects of the targeted doxorubicin by M6P-HSA suggest that this novel approach may be applied to improve the therapeutic efficacy of anticancer drugs. © 2009 UICC.

Discover hidden collaborations