Entity

Time filter

Source Type

Rockville, MD, United States

Momot D.,U.S. National Institutes of Health | Zheng C.,U.S. National Institutes of Health | Yin H.,U.S. National Institutes of Health | Elbekai R.H.,BioReliance by SAFC | And 2 more authors.
PLoS ONE | Year: 2014

In preparation for testing the safety of using serotype 2 recombinant adeno-associated vector, encoding Aquaporin-1 to treat radiation-induced salivary gland damage in a phase 1 clinical trial, we conducted a 13 week GLP biodistribution and toxicology study using Balb/c mice. To best assess the safety of rAAV2hAQP1 as well as resemble clinical delivery, vector (10 8, 109, 1010, or 4.4×1010 vector particles/gland) or saline was delivered to the right parotid gland of mice via retroductal cannulation. Very mild surgically induced inflammation was caused by this procedure, seen in 3.6% of animals for the right parotid gland, and 5.3% for the left parotid gland. Long term distribution of vector appeared to be localized to the site of cannulation as well as the right and left draining submandibular lymph nodes at levels >50 copies/μg in some animals. As expected, there was a dose-related increase in neutralizing antibodies produced by day 29. Overall, animals appeared to thrive, with no differences in mean body weight, food or water consumption between groups. There were no significant adverse effects due to treatment noted by clinical chemistry and pathology evaluations. Hematology assessment of serum demonstrated very limited changes to the white blood cell, segmented neutrophils, and hematocrit levels and were concluded to not be vector-associated. Indicators for liver, kidney, cardiac functions and general tissue damage showed no changes due to treatment. All of these indicators suggest the treatment is clinically safe. Source


Paranjpe M.G.,BioReliance by SAFC | Denton M.D.,Virginia Commonwealth University | Vidmar T.J.,BioSTAT Consultants Inc. | Elbekai R.H.,Parexel International
Toxicologic Pathology | Year: 2016

We recently conducted a retrospective analysis of data collected from 29 Tg.rasH2 carcinogenicity studies conducted at our facility to determine how successful was the strategy of choosing the high dose of the 26-week studies based on an estimated maximum tolerated dose (MTD). As a result of our publication, 2 counterviews were expressed. Both counterviews illustrate very valid points in their interpretation of our data. In this article, we would like to highlight clarifications based on several points and issues they have raised in their papers, namely, the dose-level selection, determining if MTD was exceeded in 26-week studies, and a discussion on the number of dose groups to be used in the studies. © The Author(s) 2015. Source


Pant K.,BioReliance by SAFC | Roden N.,Purdue Pharma | Zhang C.,Purdue Pharma | Bruce S.,BioReliance by SAFC | Pendino K.,Amicus Therapeutics
Environmental and Molecular Mutagenesis | Year: 2015

14-Hydroxycodeinone (14-HC) is an α,β-unsaturated ketone impurity found in oxycodone drug substance and has a structural alert for genotoxicity. 14-HC was tested in a combined Modified and Standard Comet Assay to determine if the slight decrease in % Tail DNA noted in a previously conducted Standard Comet Assay with 14-HC could be magnified to clarify if the response was due to cross-linking activity. One limitation of the Standard Comet Assay is that DNA cross-links cannot be reliably detected. However, under certain modified testing conditions, DNA cross-links and chemical moieties that elicit such cross-links can be elucidated. One such modification involves the induction of additional breakages of DNA strands by gamma or X-ray irradiation. To determine if 14-HC is a DNA crosslinker in vivo, a Modified Comet Assay was conducted using X-ray irradiation as the modification to visualize crosslinking activity. In this assay, 14-HC was administered orally to mice up to 320 mg/kg/day. Results showed a statistically significant reduction in percent tail DNA in duodenal cells at 320 mg/kg/day, with a nonstatistically significant but dose-related reduction in percent tail DNA also observed at the mid dose of 160 mg/kg/day. Similar decreases were not observed in cells from the liver or stomach, and no increases in percent tail DNA were noted for any tissue in the concomitantly conducted Standard Comet Assay. Taken together, 14-HC was identified as a cross-linking agent in the duodenum in the Modified Comet Assay. © 2015 Wiley Periodicals, Inc. Source


Paranjpe M.G.,BioReliance by SAFC | Denton M.D.,BioReliance by SAFC | Vidmar T.,BioSTAT Consultants Inc. | Elbekai R.H.,BioReliance by SAFC
International journal of toxicology | Year: 2014

Carcinogenicity studies have been performed in conventional 2-year rodent studies for at least 3 decades, whereas the short-term carcinogenicity studies in transgenic mice, such as Tg.rasH2, have only been performed over the last decade. In the 2-year conventional rodent studies, interlinked problems, such as increasing trends in the initial body weights, increased body weight gains, high incidence of spontaneous tumors, and low survival, that complicate the interpretation of findings have been well established. However, these end points have not been evaluated in the short-term carcinogenicity studies involving the Tg.rasH2 mice. In this article, we present retrospective analysis of data obtained from control groups in 26-week carcinogenicity studies conducted in Tg.rasH2 mice since 2004. Our analysis showed statistically significant decreasing trends in initial body weights of both sexes. Although the terminal body weights did not show any significant trends, there was a statistically significant increasing trend toward body weight gains, more so in males than in females, which correlated with increasing trends in the food consumption. There were no statistically significant alterations in mortality trends. In addition, the incidence of all common spontaneous tumors remained fairly constant with no statistically significant differences in trends. © The Author(s) 2014. Source


Paranjpe M.G.,BioReliance by SAFC | Denton M.D.,BioReliance by SAFC | Vidmar T.J.,BioSTAT Consultants Inc. | Elbekai R.H.,BioReliance by SAFC
Toxicologic Pathology | Year: 2015

High doses in Tg.rasH2 carcinogenicity studies are usually set at the maximum tolerated dose (MTD), although this dose selection strategy has not been critically evaluated. We analyzed the body weight gains (BWGs), mortality, and tumor response in control and treated groups of 29 Tg.rasH2 studies conducted at BioReliance. Based on our analysis, it is evident that the MTD was exceeded at the high and/or mid-doses in several studies. The incidence of tumors in high doses was lower when compared to the low and mid-doses of both sexes. Thus, we recommend that the high dose in male mice should not exceed one-half of the estimated MTD (EMTD), as it is currently chosen, and the next dose should be one-fourth of the EMTD. Because females were less sensitive to decrements in BWG, the high dose in female mice should not exceed two-third of EMTD and the next dose group should be one-third of EMTD. If needed, a third dose group should be set at one-eighth EMTD in males and one-sixth EMTD in females. In addition, for compounds that do not show toxicity in the range finding studies, a limit dose should be applied for the 26-week carcinogenicity studies. © 2014 by The Author(s). Source

Discover hidden collaborations