San Diego, CA, United States
San Diego, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
BioRegenerative Sciences | Date: 2016-12-16

A method for preparing a bioactive composition containing conditioned cell culture medium is disclosed. The method comprises culturing cells of two or more eukaryotic cell line to form conditioned culture media, separating the cultured cells from the conditioned culture media, and combining conditioned culture media to form a bioactive composition. Novel bioactive compositions, formulations and their use in treating of a variety of diseases and health conditions are also disclosed.


Maguire G.,BioRegenerative Sciences
Expert Review of Molecular Diagnostics | Year: 2013

Systems biology is a recent addition to the necessary but insufficient reductionist approach used in biological research. Systems biology is focused on understanding living things as a function of their various interactions at multiple levels: not simply as a sum of all their individual parts at any one level. This integrative approach yields predictive models of the normal state, the disease state and therapeutic actions. Although molecular biology has collected an enormous amount of information, including the sequencing of the entire human genome in the year 2000, few real-world applications have resulted from this molecular approach. The pharmaceutical industry's R&D expenditure has increased substantially since 2000, but the number of approved therapeutics has dropped simultaneously, due in part to over-reliance on reductionist genomic, and not systems, approaches. Instead of using reductionist genomics approaches alone, genomics should be incorporated into a multi-level systems biology approach to develop diagnostics and therapeutics. © 2013 Informa UK Ltd.


Maguire G.,BioRegenerative Sciences
Communicative and Integrative Biology | Year: 2013

As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells. 2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions. 3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment. © 2013 Landes Bioscience.


Maguire G.,BioRegenerative Sciences
ACS Medicinal Chemistry Letters | Year: 2014

The standard drug development model uses reductionist approaches to discover small molecules targeting one pathway. Although systems biology analyzes multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. Similar to that in physics where a departure from the old reductionist "Copenhagen View" of quantum physics to a new and predictive systems based, collective model has emerged yielding new breakthroughs such as the LASER, a new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called "systems therapeutics." © 2014 American Chemical Society.


Maguire G.,BioRegenerative Sciences
ACS Medicinal Chemistry Letters | Year: 2016

The Gartner curve for regenerative and stem cell therapeutics is currently climbing out of the "trough of disillusionment" and into the "slope of enlightenment". Understanding that the early years of stem cell therapy relied on the model of embryonic stem cells (ESCs), and then moved into a period of the overhype of induced pluripotent stem cells (iPSCs), instead of using the model of 40 years of success, i.e. adult stem cells used in bone marrow transplants, the field of stem cell therapy has languished for years, trying to move beyond the early and poorly understood success of bone marrow transplants. Recent studies in the lab and clinic show that adult stem cells of various types, and the molecules that they release, avoid the issues associated with ESCs and iPSCs and lead to better therapeutic outcomes and into the slope of enlightenment. © 2016 American Chemical Society.


Patent
BioRegenerative Sciences | Date: 2014-11-12

A method for preparing a bioactive composition containing conditioned cell culture medium is disclosed. The method comprises culturing cells of two or more eukaryotic cell line to form conditioned culture media, separating the cultured cells from the conditioned culture media, and combining conditioned culture media to form a bioactive composition. Novel bioactive compositions, formulations and their use in treating of a variety of diseases and health conditions are also disclosed.


Compositions for use in treatment of a variety of tissue diseases include stem cells and stem cell released molecules (SRMs) suspended in an aqueous solution with a cellulosic material or other thickening agent. The stem cells and SRMs can be derived from one or more distinct cell lines. The SRMs can further include one or more mucins, cytokines, or growth factors. Exemplary formulations include stem cells and SRMs derived from epithelial stem cells, corneal limbal stem cells, and fibroblasts. Other compositions and methods for formulation thereof are described.


Compositions for use in treatment of a variety of tissue diseases include stem cells and stem cell released molecules (SRMs) suspended in an aqueous solution with a cellulosic material or other thickening agent. The stem cells and SRMs can be derived from one or more distinct cell lines. The SRMs can further include one or more mucins, cytokines, or growth factors. Exemplary formulations include stem cells and SRMs derived from epithelial stem cells, corneal limbal stem cells, and fibroblasts. Other compositions and methods for formulation thereof are described.


Compositions for use in treatment of a variety of tissue diseases include stem cells and stem cell released molecules (SRMs) suspended in an aqueous solution with a cellulosic material or other thickening agent. The stem cells and SRMs can be derived from one or more distinct cell lines. The SRMs can further include one or more mucins, cytokines, or growth factors. Exemplary formulations include stem cells and SRMs derived from epithelial stem cells, corneal limbal stem cells, and fibroblasts. Other compositions and methods for formulation thereof are described.


Loading BioRegenerative Sciences collaborators
Loading BioRegenerative Sciences collaborators